CMR trong 3 số tự nhiên lẻ liên tiếp luôn tồn tại một số chia hết cho 3
Bài 1 : Cho 7 số tự nhiên bất kì. CMR bao giờ cũng có thể chọn ra 2 số có hiệu chia hết cho 6
Bài 2 : CMR trong 6 số tự nhiên liên tiếp luôn tìm được hiệu 2 số chia hết cho 5
Bài 3 : Cho 3 số lẻ. CMR tồn tại 2 số có tổng và hiệu chia hết cho 8
Bài 1
6 số tự nhiên bất kì khi chia cho 6 thì xảy ra 6 trường hợp về số dư (0;1;2;3;4;5), còn 1 số kia thì cũng có thể xảy ra 1 trong 6 trường hợp
Số này nếu trừ cho 1 trong 6 số kia thì chắc chắn có 1 số thỏa mãn
Bài 2
5 số tự nhiên liên tiêp này chia cho 5 cũng xảy ra 5 th về dư, chứng minh tương tự bài 1. Bạn cố gắng dùng từ hay hơn nha
chứng tỏ rằng trong 3 số tự nhiên liên tiếp luôn tồn tại một số chia hết cho 3
CMR trong 39 số tự nhiên liên tiếp bất kì luôn tồn tại một số có tổng các chữ số chia hết cho 11
giải bằng cách lớp 6 nhé
Giả sử các số đó là a1 < a2 <…< a39. Xét 20 số hạng đầu tiên của dãy này sẽ có hai
số tận cùng là 0 và có một số có chữ số ngay trước số tận cùng khác 9. Gọi số này là
N.
Xét các số N + 1, N + 2,…, N + 19 thuộc 39 số đã cho. Khi đó:
S(N + i) = S(N) + i với i = 0, 2,…, 9 và S(N + 19) = S(N) + 10 (kí hiệu S(a) = tổng các
chữ số của a).
Trong 11 số liên tiếp S(N), S(N) + 1,…, S(N) + 9, S(N) + 10 thì có một số chia hết
cho 11 (đpcm)
cô mình bảo kết quả đúng nhưng cách làm nó sao sao ấy
1, CMR: tổng của 3 số tự nhiên liên tiếp chia hết cho 3, tổng của 5 số tự nhiên liên tiếp thì chia hết cho 5
2,CMR:
+ tổng của 3 số chẵn liên tiếp thì chia hết cho 6
+ tổng của 3 số lẻ liên tiếp thì không chia hết cho 6
+ tổng của 5 số chẵn liên tiếp thì chia hết cho 10 còn tổng của 5 số lẻ liên tiếp thì chia 10 dư 5
1.Gọi 3 số tự nhiên liên tiếp là a, a+1, a+2
Có: a+(a+1)+(a+2)=a+a+a+1+2=3a+3=3(a+1)\(⋮\) 3
Vậy ...
Gọi 5 số tự nhiên liên tiếp là a, a+1, a+2,a+3,a+4
Có : a+(a+1)+(a+2)+(a+3)+(a+4)= a+a+a+a+a+1+2+3+4=5a+10=5(a+2)\(⋮\) 5
Vậy ...
2.
+)Gọi 3 số chẵn liên tiếp là a, a+2,a+4
Có : a+(a+2)+(a+4)=a+a+a+2+4=3a+6
mà a là số chẵn nên 3a \(⋮\) 6
\(\Rightarrow\) 3a+6\(⋮\) 6
Vậy ....
+) ngược lại ý đầu
+)Gọi 5 số chẵn liên tiếp là a, a+2,a+4 , a-2,a-4
Có : a+(a+2)+(a+4)+(a-2)+(a-4)=a+a+a+a+a+2+4-2-4=5a
mà a là số chẵn nên 5a \(⋮\) 10
\(\Rightarrow\) 5a\(⋮\) 10
Vậy ....
+) ngược lại ý 3
CMR trong 21 số tự nhiên bất kì luôn tồn tại 3 số mà từng đôi một chia hết cho 10
Chứng minh rằng:
a.Trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3.
b.Trong 3 số chẵn liên tiếp luôn có 1 số chia hết cho 3.
c.Trong 3 số lẻ liên tiếp luôn có 1 số chia hết cho 3.
chứng minh rằng trong 169 số tự nhiên liên tiếp bất kì luôn tồn tại một số có tổng các chữ số chia hết cho 16
chứng minh rằng trong 169 số tự nhiên liên tiếp bất kì luôn tồn tại một số có tổng các chữ số chia hết cho 16
Chứng minh rằng trong 19 số tự nhiên liên tiếp bất kì luôn tồn tại một số có tổng các chữ số chia hết cho 10
ticks nhé công chúa dễ thương tên là ori
có mấy người đi ăn xin li+ke kìa bà con cô bác ơi