tìm số tự nhiên n để 9 cộng 2n là số chính phương
tìm tất cả n là số tự nhiên để 2n+1, 3n+1 là số chính phương, 2n+9 là số nguyên tố
Do \(2n+1\) và \(3n+1\) là các số chính phương dương nên tồn tại các số nguyên dương a,b sao cho \(2n+1\)\(=a^2\) và \(3n+1=b^2\). Khi đó ta có:
\(2n+9=25.\left(2n+1\right)-16.\left(3n+1\right)=25a^2-16b^2=\left(5a-4b\right).\left(5a+4b\right)\)
Do \(2n+9\) là nguyên tố,\(5a+4b>1\) và \(5a+4b>5a-4b\) nên ta phải có \(5a-4b=1\), tức là: \(b=\dfrac{5a-1}{4}\)
\(\Rightarrow\) ta có: \(\left\{{}\begin{matrix}2n+1=a^2\left(1\right)\\3n+1=\dfrac{\left(5a-1\right)^2}{16}\left(2\right)\end{matrix}\right.\)
Từ (1) : \(2n+1=a^2\Rightarrow n=\dfrac{a^2-1}{2}\) và a > 1 ( do n>0)
Thay vào (2): \(\dfrac{3.\left(a^2-1\right)}{2}+1=\dfrac{\left(5a-1\right)^2}{16}\) => (a - 1).(a - 9) = 0
=> a = 9. Từ đó ta có n = 40
Vậy duy nhất một giá trị n thỏa mãn yêu cầu đề bài là : n = 40
Lớp 8+9 : Tìm n là số tự nhiên để 2n+2017 và n+2019 là 2 số chính phương.
Ta có :
2n+2017 là số chính phương lẻ => 2n+2017 chia 8 dư 1
=> 2n chia hết cho 8 => n chia hết cho 4
=> n+2019 chia ch 4 dư 3
mà số chính phương chia cho 4 dư 0,1
=> không tồn tại n
2n + 2017 là số chính phương lẻ
=> 2n + 2017 chia 8 dư 1 ( do scp lẻ chia 8 dư 1)
=> 2n chia hết cho 8 => n chia hết cho 4
=> n + 2019 chia 4 dư 3
Mà scp chia 4 dư 0 hoặc 1
=> n + 2019 ko là scp
Vậy ko tồn tại STN n thoả mãn
Đặt \(\hept{\begin{cases}2n+2017=a^2\\n+2019=b^2\end{cases}\left(a,b\inℕ^∗\right)}\)
Dễ thấy : \(a^2\) là số chính phương lẻ, mà số chính phương lẻ chia 8 luôn dư 1. ( Điều này sẽ được chứng minh ở cuối bài làm ).
\(\Rightarrow2n+2017\equiv1\left(mod8\right)\)
\(\Rightarrow2n⋮8\) \(\Rightarrow n⋮4\)
\(\Rightarrow n+2019:4\) dư 3 hay \(\Rightarrow b^2:4\) dư 3
Lại có : một số chính phương chia cho 4 chỉ có thể có số dư là 0 hoặc 1. ( Điều này sẽ được chứng minh ở cuối bài làm )
\(\Rightarrow n+2019\) không phải là số chính phương.
Do đó không tồn tại số tự nhiên n thỏa mãn đề.
*) Chứng minh bài toán phụ :
+) Số chính phương lẻ chia 8 dư 1 :
Ta có : \(\left(2k+1\right)^2=4k^2+4k+1=4k\left(k+1\right)+1\) chia 8 dư 1.
+) Một số chính phương chia cho 4 chỉ có thể có số dư là 0 hoặc 1.
Ta có : \(\left(2k\right)^2=4k^2⋮4\) nên khi chia 4 có số dư là 0.
\(\left(2k+1\right)^2=4k\left(k+1\right)+1\) chia 4 dư 1.
Tìm số tự nhiên N để dãy N+ 9; 2n + 9; 3n + 9.... không chứa số chính phương nào.
Tìm số tự nhiên N để dãy N+ 9; 2n + 9; 3n + 9.... không chứa số chính phương nào.
A,tìm số tự nhiên n có 2 chữ số để 3n+1 và 4n+1 là số chính phương
B,tìm số tự nhiên n có 2 chữ số để n+4 và 2n là số chính phương
A,tìm số tự nhiên n có 2 chữ số để 3n+1 và 4n+1 là số chính phương
B,tìm số tự nhiên n có 2 chữ số để n+4 và 2n là số chính phương
Tìm số tự nhiên N để dãy N+ 9; 2N + 9; 3N + 9.... không chứa số chính phương nào??
a. tìm a là số tự nhiên để 17a+8 là số chính phương
b. tìm a là số tự nhiên để 13a+a là số chính phương
c. tìm n là số tự nhiên sao cho 3n+4 là số chính phương
d. tìm n là số tự nhiên sao cho 2n+9 là số chính phương
a. tìm a là số tự nhiên để 17a+8 là số chính phương
Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)
\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)
\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)
tìm số tự nhiên n để 24+27+2n là số chính phương
Đặt \(A=2^4+2^7+2^n=144+2^n\)
Nếu \(n\) lẻ \(\Rightarrow n=2k+1\Rightarrow A=144+2.4^k\equiv2\left(mod3\right)\Rightarrow A\) không thể là SCP (loại)
\(\Rightarrow n\) chẵn \(\Rightarrow n=2k\)
\(\Rightarrow144+2^{2k}=m^2\)
\(\Rightarrow144=m^2-\left(2^k\right)^2\)
\(\Rightarrow144=\left(m-2^k\right)\left(m+2^k\right)\)
Giải pt ước số cơ bản này ta được đúng 1 nghiệm thỏa mãn là \(2^k=16\Rightarrow k=4\Rightarrow n=8\)
tôi thấy k=8^2,8^3,8^4.............
Tìm số tự nhiên n để 2n+8n+5 là số chính phương
- Với \(n=0\) không thỏa mãn
- Với \(n=1\) không thỏa mãn
- Với \(n=2\Rightarrow2^n+8n+5=25\) là số chính phương (thỏa mãn)
- Với \(n>2\Rightarrow2^n⋮8\Rightarrow2^n+8n+5\) chia 8 dư 5
Mà 1 SCP chia 8 chỉ có các số dư là 0, 1, 4 nên \(2^n+8n+5\) ko thể là SCP
Vậy \(n=2\) là giá trị duy nhất thỏa mãn yêu cầu