Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
vu minh hang
Xem chi tiết
bao quynh Cao
23 tháng 4 2016 lúc 18:25

ta có B=X2-20X+101

      B=X2-2.10.X+102+1

      B=(X+10)2+1

          => (X+10)2+1\(\ge\)1 ( VÌ (X+10)2\(\ge\)0)

                 Vậy gtnn của B là 1

Lam
Xem chi tiết
HT.Phong (9A5)
13 tháng 7 2023 lúc 15:52

Ta có: \(C=x^2-20x+95=x^2-20x+100-5=\left(x-10\right)^2-5\)

Mà: \(C=\left(x-10\right)^2-5\le-5\forall x\)

Dấu "=" xảy ra

\(\left(x-10\right)^2=0\Leftrightarrow x-10=0\Leftrightarrow x=10\)

Vậy \(C_{min}=-5\Leftrightarrow x=10\) 

Trần Cao Vỹ Lượng
Xem chi tiết
Phạm Thị Thùy Linh
14 tháng 6 2019 lúc 9:01

\(A=x^2-20x+101\)

\(=x^2-20x+100+1\)

\(=\left(x-10\right)^2+1\)

\(\Rightarrow A_{min}=1\Leftrightarrow\left(x-10\right)^2=0\)

\(\Rightarrow x-10=0\)

\(\Rightarrow x=10\)

T.Ps
14 tháng 6 2019 lúc 9:06

#)Giải :

\(A=x^2-20x+101\)

\(A=x^2+2.10.x+10^2+1\)

\(A=\left(x+10\right)^2+1\ge1\)

Dấu ''='' xảy ra khi x = -10

=> Vậy GTNN của A = 1 đạt được khi x = -10

Phạm Thị Thùy Linh
14 tháng 6 2019 lúc 9:09

\(a,\)\(4x-x^2+3\)

\(=-\left(x^2-4x-3\right)\)

\(=-\left(x^2-2.x.2+2^2-7\right)\)

\(=-\left[\left(x-2\right)^2-7\right]\)

\(=-\left(x-2\right)^2+7\)

\(\Rightarrow A_{min}=7\Leftrightarrow\left(x-2\right)^2=0\)

\(\Rightarrow x-2=0\)

\(\Rightarrow x=2\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 12 2017 lúc 15:29

Ta có

E   =   x 2   –   20 x   + 101   =   x 2   –   2 . x . 10   +   100   +   1   =   ( x   –   10 ) 2   +   1

Vì x   –   10 2 ≥ 0; Ɐx => x   –   10 2 + 1 ≥ 1

Dấu “=” xảy ra khi x   –   10 2 = 0 ó x – 10 = 0 ó x = 10

Vậy giá trị nhỏ nhất của E là 1 khi x = 10

Đáp án cần chọn là: B

Tuấn Anh Khuất
Xem chi tiết
Bùi Đình Bảo
1 tháng 10 2017 lúc 11:12

max A= -201 tại x=10(câu này dễ)

B= (x-2y+5)^2+(y-1)^2+2 suy ra max B=2 tại y=1 => x = -3. ^_^

Hi HI Hi
Xem chi tiết
Nguyễn Hoàng Minh
22 tháng 12 2021 lúc 22:22

\(A=\left(x^2-6x+9\right)+2=\left(x-3\right)^2+2\ge2\\ A_{min}=2\Leftrightarrow x=3\\ B=2\left(x^2-10x+25\right)+51=2\left(x-5\right)^2+51\ge51\\ B_{min}=51\Leftrightarrow x=5\\ C=\left[\left(x^2-4xy+4y^2\right)+10\left(x-2y\right)+25\right]+\left(y^2-2y+1\right)+2\\ C=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\\ C_{min}=2\Leftrightarrow\left\{{}\begin{matrix}x-2y+5=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2y-5=2-5=-3\\y=1\end{matrix}\right.\)

Lấp La Lấp Lánh
22 tháng 12 2021 lúc 22:23

a) \(A=\left(x^2-6x+9\right)+2=\left(x-3\right)^2+2\ge2\)

\(minA=2\Leftrightarrow x=3\)

b) \(B=2\left(x^2-10x+25\right)+51=2\left(x-5\right)^2+51\ge51\)

\(minB=51\Leftrightarrow x=5\)

c) \(C=\left[x^2-2x\left(2y-5\right)+\left(2y-5\right)^2\right]+\left(y^2-2y+1\right)+2=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)

\(minC=2\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)

33. Nguyễn Minh Ngọc
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
22 tháng 10 2020 lúc 21:27

a) x2 - 6x + 11 = ( x2 - 6x + 9 ) + 2 = ( x - 3 )2 + 2 ≥ 2 ∀ x

Dấu "=" xảy ra khi x = 3

=> GTNN của bthuc = 2 <=> x = 3

b) x2 - 20x + 101 = ( x2 - 20x + 100 ) + 1 = ( x - 10 )2 + 1 ≥ 1 ∀ x

Dấu "=" xảy ra khi x = 10

=> GTNN của bthuc = 1 <=> x = 10

c) x2 - 4xy + 5y2 + 10x - 22y + 28

= ( x2 - 4xy + 4y2 + 10x - 20y + 25 ) + ( y2 - 2y + 1 ) + 2

= [ ( x2 - 4xy + 4y2 ) + ( 10x - 20y ) + 25 ] + ( y - 1 )2 + 2

= [ ( x - 2y )2 + 2( x - 2y ).5 + 52 ] + ( y - 1 )2 + 2

= ( x - 2y + 5 )2 + ( y - 1 )2 + 2 ≥ 2 ∀ x, y

Dấu "=" xảy ra khi x = -3 ; y = 1

=> GTNN của bthuc = 2 <=> x = -3 ; y = 1

Khách vãng lai đã xóa
Phước Lộc
22 tháng 10 2020 lúc 21:28

a) \(x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\)

ta có: \(\left(x-3\right)^2\ge0\forall x\)=> \(\left(x-3\right)^2+2\ge2\)

dấu "=" xảy ra khi \(x-3=0\Leftrightarrow x=3\)

Vậy biểu thức đạt GTNN là 2 khi chỉ khi x = 3

Khách vãng lai đã xóa
Lưu Thị Bằng
22 tháng 10 2020 lúc 21:31

       \(a,x^2-6x+11=x^2-2.x.3+9+2=\left(x-3\right)^2+2\)

Mà \(\left(x-3\right)^2\ge0\)\(\Rightarrow\left(x-3\right)^2+2\ge2\)

       \(\Rightarrow GTNN\)của \(x^2-6x+11\) là \(2\)

Dấu "=" khi và chỉ khi x=3

Khách vãng lai đã xóa
Phạm Hà Linh
Xem chi tiết
Phan Nghĩa
27 tháng 8 2020 lúc 17:19

Bài 1

a) \(\left(x+1\right)^3+\left(x-1\right)^3+x^3-3x\left(x-1\right)\left(x+1\right)\)

\(=x^3+3x^2+3x+1+x^3-3x^2+3x-1+x^3-3x\left(x^2-1\right)\)

\(=3x^3+6x-3x^3+3x=9x\)

b) \(\left(a+b+c\right)^2+\left(a+b-c\right)^2+\left(2a-b\right)^2\)

\(=a^2+b^2+c^2+2\left(ab+bc+ca\right)+a^2+b^2+c^2+2ab-2bc-2ca+4a^2-4ab+b^2\)

\(=6a^2+3b^2+2c^2+4ab-4ab=6a^2+3b^2+2c^2\)

Bài 2 

a) \(x^2-20x+101=\left(x^2-20x+100\right)+1=\left(x-10\right)^2+1\ge1\)

Dấu = xảy ra \(< =>\left(x-10\right)^2=0< =>x-10=0< =>x=10\)

b) \(4a^2+4a+2=4\left(a^2+a+\frac{1}{4}\right)+1=4\left(a+\frac{1}{2}\right)^2+1\ge1\)

Dấu = xảy ra \(< =>4\left(a+\frac{1}{2}\right)^2=0< =>a+\frac{1}{2}=0< =>a=-\frac{1}{2}\)

c) \(x^2-4xy+5y^2+10x-22y+28=\left(x^2-4xy+4y^2\right)+10\left(x-2y\right)+y^2-2y+1+27\)

\(=\left(x-2y\right)^2+2.5.\left(x-2y\right)+25+\left(y-1\right)^2+2\)

\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)

Dấu = xảy ra \(< =>\hept{\begin{cases}y-1=0\\x-2y+5=0\end{cases}< =>\hept{\begin{cases}y=1\\x=-3\end{cases}}}\)

Bài 3 

a) \(4x-x^2+3=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)

Dấu = xảy ra \(< =>\left(x-2\right)^2=0< =>x-2=0< =>x=2\)

b) \(x-x^2=-\left(x^2-x+\frac{1}{4}\right)+\frac{1}{4}=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)

Dấu = xảy ra \(< =>\left(x-\frac{1}{2}\right)^2=0< =>x-\frac{1}{2}=0< =>x=\frac{1}{2}\)

Khách vãng lai đã xóa
Trương Tiểu Hàn
Xem chi tiết
Trương Tiểu Hàn
Xem chi tiết
zZz Cool Kid_new zZz
5 tháng 11 2019 lúc 19:53

\(A=4x^2-4xy+5y^2+20x-6y+2044\)

\(=\left(4x^2-4xy+y^2\right)+20x-6y+4y^2+2044\)

\(=\left(2x-y\right)^2+10\left(2x-y\right)+25+\left(4y^2+4y+1\right)+2018\)

\(=\left(2x-y+5\right)^2+\left(2y+1\right)^2+2018\ge2018\)

Dấu "=" xảy ra tại \(y=-\frac{1}{2};x=-\frac{11}{4}\)

Khách vãng lai đã xóa
Nguyễn Ngọc Tuấn Anh
5 tháng 11 2019 lúc 19:59

Ta có \(A=4x^2-4xy+5y^2+20x-6y+2044\)

            \(=4x^2-4x\left(y-5\right)+\left(y-5\right)^2+4y^2+4y+1+2018\)

            \(=\left(2x-y+5\right)^2+\left(2y+1\right)^2+2018\)

Vì...\(\Rightarrow A\ge2018\)

Dấu bằng xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-y+5=0\\2y+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-\frac{11}{4}\\y=-\frac{1}{2}\end{cases}}}\)

Khách vãng lai đã xóa
Trương Tiểu Hàn
5 tháng 11 2019 lúc 20:48

Mấy bạn giải chi tiết ra giùm mình

Khách vãng lai đã xóa