x^2016 = x
x-2016/2016+x-2016/2015+x-2016/2014+x-2016/2013+x-2016/2012
nếu 1/x + 1/y + 1/z = 1/(x + y + z) thì 1/x^2016 + 1/y^2016 + 1/z^2016 =1/(x^2016+y^2016+z^2016)
Thêm điều kiện : x,y,z khác 0 và x+y+z khác 0
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)\(\Rightarrow\) \(\left(\frac{1}{x}+\frac{1}{y}\right)+\left(\frac{1}{z}-\frac{1}{x+y+z}\right)=0\)\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\)\(\Leftrightarrow\left(x+y\right)\left(\frac{xz+xy+yz+z^2}{xyz\left(x+y+z\right)}\right)=0\)\(\Leftrightarrow\frac{\left(x+y\right)\left(x+z\right)\left(z+y\right)}{xyz\left(x+y+z\right)}=0\)
Do đó : x + y = 0 hoặc x + z = 0 hoặc y + z = 0
Từ đó thay x,y,z vào từng trường hợp rồi suy ra đpcm
1/x+1/y+1/z=1/xyz
1/x+1/y=1/xyz-1/z
(x+y)(xy+yz+z^2)=0
(x+y)(x+z)(y+z)=0
x+y=0 suy ra x=-y
x+z=o suy ra z=x
z+y=0 suy ra y=-z
voi x=-y suy ra 1/x^2016+1/y^2016+1/z^2016=1/-y^2016+1/y^2016+1/z^2016=1/z^2016 (1)
1/x^2016+y^2016+z^2016=1/-y^2016+y^2016+z^2016 =1/z^2016 (2)
tu 1 va 2 suy ra dpcm
tinh gum minh cai chc chan bai nay dung
cho x^2/a^2 + y^2/b^2 + z^2/c^2 =x^2+y^2+z^2/a^2+b^2+c^2
CMR x^2016/a^2016 + y^2016/b^2016 +z^2016/c^2016 = x^2016+y^2016+z^2016/a^2016+b^2016+c^2016
Cho : A = 2016 x 2016 x ... x 2016 ( A gồm 2015 thừa số )
B = 2017 x 2017 x .... x 2017 ( B gồm 2016 thừa số )
Tính A = x2016 - 2016.x2015 + 2016.x2014 - 2016.x2013 + ... + 2016x2 - 2016x +2016 tại x = 2015
x=2015
=> x+1=2016
=> A=x2016-(x+1).x2015+(x+1).x2014-(x+1).x2013+...+(x+1)x2-(x+1)x+2016
=x2016-x2016-x2015+x2015+x2014-x2014-x2013+...+x3+x2-x2-x+2016
=-x+2016
=-2015+2016
=1
Vậy A=1.
cho đa thức P(x) = x2016 - 2016 x2015 - 2017 x2014 -.....-2016 x2 - 2016 x +1
tính P(2016)
giải bài toán a=(1-1/2016)x(1-2/2016)x(1-3/2016)x...x(1-2017/2016)
x^2016-x^2014+x^2012-x^2010+...+x^2-2016 tại x =2016, tính giá trị biểu thức
tìm x,y biết x^2015 +x^2016+2015^2016=y^2016+y^2017+2016^2017