phân tích đa thức thành nhân tử : (a+1)^4 + a^2 . (a+1)^2 + 2a(a+1) +1
phân tích đa thức thành nhân tử:
1.(1/4)a^4-a^2b+b^2
2. 2a^2+2b^2-a^2c+c-b^2c-2
1.=[(1/2)a^2)^2-2.(1/2)a^2b+b^2
=[(1/2)a^2-b]^2
2.=2a^2+2b^2-2-a^2c+c-b^2c
=2(a^2+b^2-a)-c(a^2+b^2-1)
=(2-c)(a^2+b^2-1)
1) 4(2x-3)^2-9(4x^2-9)^2
2) a^6-a^4+2a^3+2a^2
Phân tích đa thức thành nhân tử
a) 4(2x-3)^2-9(4x^2-9)^2
=[2(2x-3)]^2-[3(4x^2-9)]^2
=(4x-6)^2-(12x^2-27)^2
=(4x-6+12x^2-27)(4x-6-12x^2+27)
=(12x^2+4x-33)(4x-12x^2+21)
b) a^6-a^4+2a^3+2a^2
=a^4(a^2-1)+2a^2(a+1)
=a^4(a+1)(a-1)+2a^2(a+1)
=(a+1)[(a^4)(a-1)+2a^2]
=(a+1)(a^5+a^4+2a^2)
Phân tích đa thức thành nhân tử:
a) 4abc-8ab2c
b)x2(2a-1)+x(1-2a)
c) 9a4(a-2)+a2(a-2)
d) (a-4)(2a-1)-8a+4
a, \(4abc-8ab^2c=4abc\left(1-2b\right)\)
b, \(x^2\left(2a-1\right)+x\left(1-2a\right)=x^2\left(2a-1\right)-x\left(2a-1\right)\)
\(=x\left(x-1\right)\left(2a-1\right)\)
c, \(9a^4\left(a-2\right)+a^2\left(a-2\right)=a^2\left(9a^2+1\right)\left(a-2\right)\)
d, \(\left(a-4\right)\left(2a-1\right)-8a+4=\left(a-4\right)\left(2a-1\right)-4\left(2a-1\right)\)
\(=\left(a-8\right)\left(2a-1\right)\)
a) `4abc-8ab^2c=4abc(1-2b)`
b) `x^2 (2a-1)+x(1-2a) = x^2 (2a-1) -x(2a-1) = (2a-1)(x^2-x)=x(2a-1)(x-1)`
c) `9a^4 (a-2) +a^2 (a-2) = (a-2)(9a^4+a^2)=a^2 (a-2)(9a^2+1)`
d) `(a-4)(2a-1)-8a+4=(a-4)(2a-1)-4(2a-1)=(2a-1)(a-8)`
1,a^5-a
2,a^3+3a^2+2a
3,(a^2+a-1)^2-1
4,2x^4-7x^3-2x^2+13x+6.
phân tích đa thức thành nhân tử
\(a^5-a\)
\(=a\left(a^4-1\right)\)
\(=a\left(a^2-1\right)\left(a^2+1\right)\)
\(=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)\)
phân tích đa thức sau thành nhân tử
27x^3-0,001
a^4-2a^2+1
(a^2+4)^2-16a^2
a) \(27x^3-0,001\)
\(=\left(3x\right)^3-\left(\frac{1}{10}\right)^3\)
\(=\left(3x-\frac{1}{10}\right)\left(9x^2+\frac{3}{10}x+\frac{1}{100}\right)\)
b) \(a^4-2a^2+1\)
\(=\left(a^2\right)^2-2a^2+1\)
\(=\left(a^2-1\right)^2\)
c)\(\left(a^2+4\right)^2-16a^2\)
\(=\left(a^2+4\right)^2-\left(4a\right)^2\)
\(=\left(a^2+4-4a\right)\left(a^2+4+4a\right)\)
\(=\left(a-2\right)^2\left(a+2\right)^2\)
Q: Phân tích đa thức sau thành nhân tử chung: 1) a³-2a²+a-ab² 2)x⁴+x³+x+1 3)x⁴-x³-x²+1 4) ax²+a²y-7x-7y 5) x.(x+1)²+x.(x-5)-5.(x+1)²
2: \(x^4+x^3+x+1\)
\(=x^3\left(x+1\right)+\left(x+1\right)\)
\(=\left(x+1\right)\left(x^3+1\right)\)
\(=\left(x+1\right)^2\cdot\left(x^2-x+1\right)\)
Phân tích đa thức thành nhân tử
a(a+2b)^3-b(2a+b)^3
(x-2)(x-3)(x-4)(x-5)+1
cái này mk chưa hok tới!!!
54746746745764565465476467568457879797689685856
Phân tích đa thức thành nhân tử
a. (x + 1)^2 - 2 (x + 1)( y -3) + (y -3)^2
b. a^2 + b^2 + 2a - 2b - 2ab
a, \(\left(x+1\right)^2-2\left(x+1\right)\left(y-3\right)+\left(y-3\right)^2=\left[\left(x+1\right)-\left(y-3\right)\right]^2\)
\(=\left(x+1-y+3\right)^2=\left(x-y+4\right)^2\)
b, \(a^2+b^2+2a-2b-2ab=\left(a^2-2ab+b^2\right)+\left(2a-2b\right)\)
\(=\left(a-b\right)^2+2\left(a-b\right)=\left(a-b\right)\left[\left(a-b\right)+2\right]=\left(a-b\right)\left(a-b+2\right)\)
Bài 1: Phân tích đa thức thành nhân tử
a)4(2-x)\(^2\)+xy-2y b)3a\(^2\)x-3a\(^2\)y+abx-aby
Bài 2: Phân tích đa thức thành nhân tử
a)x(x-y)\(^3\)-y(y-x)\(^2\)-y\(^2\)(x-y) b)2ax\(^3\)+6ax\(^2\)+6ax+18a
Bài 3: Phân tích đa thức thành nhân tử
a)x\(^2\)y-xy\(^2\)-3x+3y b)3ax\(^2\)+3bx\(^2\)+bx+5a+5b
Bài 4: Tính giá trị biểu thức
A=a(b+3)-b(3+b) tại a=2003 và b=1997
Bài 5: Tìm x, biết
a)8x(x-2017)-2x+4034=0 b)x\(^2\)(x-1)+16(1-x)=0
\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)