Cho a,b là các số nguyên thoả mãn \(2a^2+3ab+2b^2\)chia hết cho 7.Chứng minh rằng \(a^2-b^2\)chia hết cho 7
Cho a,b là số nguyên thỏa mãn: 2a+7 chia hết cho 3.Chứng minh rằng 4a +2b chia hết cho 3
Chứng minh rằng nếu hai số nguyên a và b thỏa mãn \(a^2+b^2\)chia hết cho 5 thì 2a+b; 2b+a; 2a-b; 2b-a cũng chia hết cho 5
cho a b là các số nguyên thoả mãn (2a +7b) chia hết cho 3 chứng tỏ (4a+2b) chia hết cho 3
Với a, b là các số nguyên sao cho a2 + b2 chia hết cho 13. Chứng minh rằng một trong hai số 2a + 3b, 2b + 3a chia hết cho 13
Cho các sô a, b, c, d nguyên dương đôi 1 khác nhau và thoả mãn
A= (2a+b) /(a+b) + (2b+c) /(b+c) + (2c+d) /(c+d) + ( 2d+a) /(d+a) =6
chứg minh A là số chính phương
Tìm a nguyên để a^3-2a^2+7a-7 chia hết cho a^2+3
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}=2\Leftrightarrow1-\frac{a}{a+b}-\frac{b}{b+c}+1-\frac{c}{c+d}-\frac{d}{d+a}=0\)
\(\Leftrightarrow\frac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\frac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)
\(\Leftrightarrow b\left(c-a\right)\left(a+b\right)\left(b+c\right)-d\left(c-a\right)\left(c+d\right)\left(d+a\right)=0\)
\(\Leftrightarrow b\left(a+b\right)\left(b+c\right)-d\left(c+d\right)\left(d+a\right)=0\)
\(\Leftrightarrow bad+bd^2+bca+bcd-dab-dac-db^2-cbd=0\)
\(\Leftrightarrow bca-dca+bd^2-db^2=0\)
\(\Leftrightarrow\left(b-d\right)\left(ca-bd\right)=0\)
\(\Rightarrow ca=bd\Rightarrow abcd=bd^2\)
cho a ,b là số nguyên thỏa mãn 2a+7b chia hết cho 3 chứng minh rằng 4a+2b chia hết cho 3
Ta có : ( 2a + 7b ) + ( 4a + 2b ) = 6a + 9b
=> ( 6a + 9b ) - ( 2a + 7b ) = 4a + 2b
Mà 6a + 9b và 2a + 7b chia hết cho 3 nên 4a + 2b chia hết cho 3
Vì 2a+7b \(⋮\)3
=>2(2a+7b)\(⋮\)3
=>4a+14b\(⋮\)3
=>4a+2b+12b\(⋮\)3
Vì 12b\(⋮\)3
=>4a+2b\(⋮\)3(ĐCCM)
Bài 2 :
a, Cho các số a,b,c,d là các số nguyên dương đôi 1 khác nhau và thỏa mãn :
\(\dfrac{2a+b}{a+b}+\dfrac{2b+c}{b+c}+\dfrac{2c+d}{c+d}+\dfrac{2d+a}{d+a}=6\) . Chứng minh \(A=abcd\) là số chính phương
b, Tìm nguyên a để \(a^3-2a^2+7a-7\) chia hết cho \(a^2+3\)
Cho a, b là hai số nguyên dương thỏa mãn \(\dfrac{a+b^3}{a^2+3ab+3b^2-1}\) là một số nguyên. Chứng minh rằng a2 + 3ab + 3b2 - 1 chia hết cho lập phương của một số nguyên lớn hơn 1
cho a và b là các số tự nhiên thỏa mãn a^2+b^2 chia hết 7. chứng minh rằng a và b đều chia hết cho 7
Nhận thấy một số chính phương khi chia cho 7 có các số dư: 0,1,2,4. Xét các trường hợp:
+) Nếu một trong 2 số chia hết cho 7 thì hiển nhiên số còn lại cũng chia hết cho 7.
+) Nếu cả 2 số đều không chia hết cho 7, ta thấy trong 3 số 1,2,4 không có 2 số nào có tổng chia hết cho 7 => \(a^2+b^2\) không chia hết cho 7.
Vậy ta có đpcm.