Cho tam giác ABC vuông tại A có phân giác BD. Từ D hạ DH vuông góc BC. Chứng minh
a) AH vuoong góc BD tại trung điểm I của AH
b) Nếu góc ADH=100 độ thì góc BAH=?
Cho tam giác ABC vuông tại A có phân giác BD. Từ D hạ DH vuông góc BC. Chứng minh
a) AH vuoong góc BD tại trung điểm I của AH
b) Nếu góc ADH=100 độ thì góc BAH=?
Cho tam giác ABC vuông góc tại A, phân giác BD, từ BD kẻ DH vuông góc với BC
a, Chứng minh: AH vuông góc với BD tại trung điểm I của AH
b, Nếu góc ADH = 100 độ thì góc BAH bằng bao nhiêu?
Cho Tam giác abc vuông tại a đường phân giác BD d thuộc ac từ d kẻ dh vuông góc với bc tại h
A) chứng minh ah vuông góc với bd
B)tính góc bah biết góc adh bằng 110 độ
a) Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABH}\))
Do đó: ΔBAD=ΔBHD(cạnh huyền-góc nhọn)
Suy ra: BA=BH(hai cạnh tương ứng) và AD=HD(Hai cạnh tương ứng)
Ta có: BA=BH(cmt)
nên B nằm trên đường trung trực của AH(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: AD=HD(cmt)
nên D nằm trên đường trung trực của AH(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra BD là đường trung trực của AH
\(\Leftrightarrow AH\perp BD\)(đpcm)
b) Xét ΔDAH có DA=DH(cmt)
nên ΔDAH cân tại D(Định nghĩa tam giác cân)
\(\Leftrightarrow\widehat{DAH}=\dfrac{180^0-\widehat{ADH}}{2}\)(Số đo của một góc ở đáy trong ΔDAH cân tại D)
\(\Leftrightarrow\widehat{DAH}=\dfrac{180^0-110^0}{2}=35^0\)
Ta có: \(\widehat{BAH}+\widehat{DAH}=\widehat{BAD}\)(tia AH nằm giữa hai tia AD,AB)
\(\Leftrightarrow\widehat{BAH}+35^0=90^0\)
hay \(\widehat{BAH}=55^0\)
Vậy: \(\widehat{BAH}=55^0\)
cho tam giác vuông ABC có góc A =90 độ . đường phân giác BD . Từ D kẻ DH vuông góc với BC
a, Chưng minh AH vuông góc với BD
b, Tính góc BAH , nếu biết góc ADH = 110 độ
Mình làm tắt nha:
a, Ta có: tam giác ABD = tam giác AHD (ch+gn)
=>AB=AH
=> tam giác ABI = tam giác AHI (ch+cgv)
=> Góc AIB=góc AIH mà chúng kề bù
=> góc AIB = AIH = 900.
=> AH vuông góc với BD
b, tam giác ABD = tam giác AHD (cmt)
=> góc ADB=ADH mà tổng bằng 1100
=> góc ADB = ADH = 550.
=> góc DAH = 1800-900-550=350.
=> góc BAH = 900-350=550.
Cho tam giác ABC vuông tại A, đường phân giác BD ( D thuộc AC ). Từ D kẻ DH vuông góc với BC.
a, Tam giác BAH là tam giác gì? Vì Sao?
b, So sánh AD và DC
c, Chứng minh: DB là phân giác của góc ADH
d, Gọi K là giao điểm của AB và DH. I là trung điểm của KC. Chứng minh: 3 điểm B; I; D thẳng hàng.
Cho tam giác ABC vuông tại A kẻ AH vuông góc BC tại H trên đường thẳng vuông góc với BC tại B lấy điểm D sao cho BD=AH
a,chứng minh tam giác AHB=DBH
b,chứng minh AB song song DH
c,biết góc BAH=35 độ. Tính góc ACB
cho tam giác ABC vuông cân tại A . phân giác BD có DH vuông góc với BC
chứng minh AH vuông góc với BC
tính BAH biết ADH = 118
cho tam giác ABC vuông tại A. đường phân giác BD, từ D kẻ DHvuoong góc với BC. chứng minh rằng
a) AH vuông góc với BD
b)tính góc BAH nếu góc ADH= 1100
Cho tam giác ABC vuông ở A có đường phân giác BD . Từ D kẻ DH vuông góc với BC
a)CM AH vuông góc với BD
b) Tính góc BAH nếu góc ADH bằng 110 độ
tự vẽ hình nhé
a, Xét \(\Delta\)ABD và\(\Delta\)HBD có
BD chung
\(\widehat{ABD}\)=\(\widehat{HBD}\)(gt)
\(\Rightarrow\)\(\Delta\)ABD=\(\Delta\)HBD( CH-GN)\(\Rightarrow\)AB=HB(1)
Gọi I là giao điểm của AH và BD
Xét \(\Delta\)ABI và \(\Delta\)HBI có
AB=HB(theo 1)
\(\widehat{ABI}\)=\(\widehat{HBI}\)(gt)
IB chung
\(\Rightarrow\)\(\Delta\)ABI=\(\Delta\)HBI(c.g.c)\(\Rightarrow\)\(\widehat{AIB}\)=\(\widehat{HIB}\)mà 2 góc đó ở vị trí kề bù \(\Rightarrow\)\(\widehat{AIB=}\)\(\widehat{HIB=90}đo\)\(\Rightarrow\)AH vuông góc vs BD
b, Vì \(\Delta\)ABD=\(\Delta\)HBD\(\Rightarrow\)\(\widehat{ADB}\)=\(\widehat{HDB}\)=55 độ
Xét \(\Delta\)ADB có\(\widehat{A}\)+\(\widehat{ABD}\)+\(\widehat{BDA}\)=180 độ
\(\Leftrightarrow\)90 độ +\(\widehat{ABD}\)+55 độ=180 độ
\(\Leftrightarrow\)\(\widehat{ABD}\)=35 độ
Xét \(\Delta\)ABI có: \(\widehat{ABI}\)+\(\widehat{BIA}\)+\(\widehat{BAH}\)=180 độ
\(\Leftrightarrow\)35 độ +90 độ+\(\widehat{BAH}\)=180 độ
\(\Leftrightarrow\)\(\widehat{BAH}\)=55 độ
Vậy \(\widehat{BAH}\)= 55 độ