Tìm giá trị lớn nhất của biểu thức sau :
N =\(\frac{1}{2007+\left(1-2\times x\right)^2}\)
Mấy bn giúp mk với nha khó quá:D
Tìm giá trị lớn nhất của biểu thức sau:
N=\(\frac{1}{2007+\left(1-2.x\right)^2}\)
ta thấy: 2007 lớn hơn hoặc bằng 0
\(\left(1-2.x\right)^2\) lớn hơn hoặc bằng 0
dấu = xảy ra khi:a.b lớn hơn hoặc bằng 0
2007+\( \left(1-2.x\right)^2\) >hoặc =2007
dấu = xảy ra khi:
N=2007 và \(\left(1-2.x\right)^2\) = 0
1-2.x=0
2.x=1
x=\(\frac{1}{2}\)
vậy N có giá trị lớn nhất là 2007 khi x=\(\frac{1}{2}\)
GTLN của N=\(\frac{1}{2007}\)khi x=\(\frac{1}{2}\)
k mik nha
Cho biểu thức:
N=\(\frac{\left(x+2\right)^2}{x}.\left(1-\frac{x^2}{x+2}\right)-\frac{x^2+6x+4}{x}\)
a) Tìm điều kiện xác định của biểu thức N. Rút gọn N
b) Tìm x để biểu thức N đạt giá trị lớn nhất. Tìm giá trị lớn nhất đó
a) ĐKXĐ : \(\hept{\begin{cases}x\ne0\\x\ne-2\end{cases}}\)
\(N=\frac{\left(x+2\right)^2}{x}.\left(1-\frac{x^2}{x+2}\right)-\frac{x^2+6x+4}{x}\)
\(N=\frac{\left(x+2\right)^2}{x}.\frac{x+2-x^2}{x+2}-\frac{x^2+6x+4}{x}\)
\(N=\frac{\left(x+2\right)\left(x+2-x^2\right)-x^2-6x-4}{x}\)
\(N=\frac{x^2+2x-x^3+2x+4-2x^2-x^2-6x-4}{x}\)
\(N=\frac{-x^3-2x^2-2x}{x}\)
\(N=\frac{-x\left(x^2+2x+2\right)}{x}\)
\(N=-\left(x^2+2x+2\right)\)
b) \(N=-\left(x^2+2x+2\right)\)
\(\Leftrightarrow N=-\left(x^2+2x+1+1\right)\)
\(\Leftrightarrow N=-\left(x+1\right)^2-1\le-1\)
Max N = -1 \(\Leftrightarrow x=-1\)
Vậy .......................
1. Tìm giá tị nhỏ nhất (GTNN) của biểu thức:
a. \(M=|x+\frac{15}{19}|\)
b. \(N=\left|x-\frac{4}{7}\right|-\frac{1}{2}\)
2. Tìm giá trị lớn nhất (GTLN) của biểu thức sau:
a. \(P=-\left|\frac{5}{3}-x\right|\)
b. \(Q=9-\left|x-\frac{1}{10}\right|\)
3. Tìm x, y biết:
a. \(\left|x-y-5\right|+2007\cdot\left(y-3\right)^{2004}=0\)
b. \(\left(x+y\right)^{2016}+2007\cdot\left|y-1\right|=0\)
c. \(\left(x-1\right)^2+\left(y+3\right)^2=0\)
1. a) Ta có: M = |x + 15/19| \(\ge\)0 \(\forall\)x
Dấu "=" xảy ra <=> x + 15/19 = 0 <=> x = -15/19
Vậy MinM = 0 <=> x = -15/19
b) Ta có: N = |x - 4/7| - 1/2 \(\ge\)-1/2 \(\forall\)x
Dấu "=" xảy ra <=> x - 4/7 = 0 <=> x = 4/7
Vậy MinN = -1/2 <=> x = 4/7
2a) Ta có: P = -|5/3 - x| \(\le\)0 \(\forall\)x
Dấu "=" xảy ra <=> 5/3 - x = 0 <=> x = 5/3
Vậy MaxP = 0 <=> x = 5/3
b) Ta có: Q = 9 - |x - 1/10| \(\le\)9 \(\forall\)x
Dấu "=" xảy ra <=> x - 1/10 = 0 <=> x = 1/10
Vậy MaxQ = 9 <=> x = 1/10
3a) Ta có:
|x - y - 5| + 2007.(y - 3)2004 = 0
<=> \(\hept{\begin{cases}x-y-5=0\\y-3=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=y+5\\y=3\end{cases}}\)
<=> \(\hept{\begin{cases}x=8\\y=3\end{cases}}\)
b) Ta có :
(x + y)2016 + 2007.|y - 1| = 0
<=> \(\hept{\begin{cases}x+y=0\\y-1=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=-y\\y=1\end{cases}}\)
<=> \(\hept{\begin{cases}x=-1\\y=1\end{cases}}\)
c) (x - 1)2 + (y + 3)2 = 0
<=> \(\hept{\begin{cases}x-1=0\\y+3=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=1\\y=-3\end{cases}}\)
1. Tìm giá trị lớn nhất của biểu thức sau: \(H=\frac{1}{\left|8x+16\right|+1}\)
2. Tìm giá trị nhỏ nhất của biểu thức sau:\(K=\frac{1}{-\left|x-3\right|-1}\)
3. Tìm giá trị nhỏ nhất của biểu thức sau:\(L=\frac{1}{-\left|2x-2\right|-1}\)
Giải mau mau giùm mink nhé các bn, thanks nhiều
Đáy lớn là
26 + 8 = 34 M
chIỀU CAO là
26 - 6 = 20 m
Diện tích thửa ruộng là
{ 34 + 26 } x 20 : 2 = 800 m2
Đáp số 800 m2
1.Để H đạt GTLN
=>|8x+16|+1 đạt giá trị dương nhỏ nhất
=>|8x+16|+1=1
=>MaxH=1
Dấu "=" xảy ra khi x=-2
Vậy...
1.Để H đạt GTLN
=>|8x+16|+1 đạt giá trị dương nhỏ nhất
=>|8x+16|+1=1
=>MaxH=1
Dấu "=" xảy ra khi x=-2
Vậy...
1. Tìm giá trị nhỏ nhất của các biểu thức
a) C= \(x^2+3\left|y-2\right|-1\)
b)D= x+|x|
2. Tìm giá trị lớn nhất của các biểu thức.
a) A= \(5-\left|2x-1\right|\)
b)B= \(\frac{1}{\left|x-2\right|+3}\)
3. Tìm giá trị lớn nhất của biểu thức \(C=\frac{x+2}{\left|x\right|}\)với x là số nguyên.
2.
a/\(A=5-I2x-1I\)
Ta thấy: \(I2x-1I\ge0,\forall x\)
nên\(5-I2x-1I\le5\)
\(A=5\)
\(\Leftrightarrow5-I2x-1I=5\)
\(\Leftrightarrow I2x-1I=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)
b/\(B=\frac{1}{Ix-2I+3}\)
Ta thấy : \(Ix-2I\ge0,\forall x\)
nên \(Ix-2I+3\ge3,\forall x\)
\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)
\(B=\frac{1}{3}\)
\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)
\(\Leftrightarrow Ix-2I+3=3\)
\(\Leftrightarrow Ix-2I=0\)
\(\Leftrightarrow x=2\)
Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)
Tìm giá trị lớn nhất của biểu thức :
A = \(\frac{1}{2\left(x-1\right)^2+3}\)
Tìm các giá trị nguyên của x để các biểu thức sau có giá trị lớn nhất :
A = \(\frac{1}{7-x}\)
B = \(\frac{27-2x}{12-x}\)
Tìm giá trị nhỏ nhất :
B = \(\left(x^4+5\right)^2\)
A lớn nhất khi 2(x-1)^2 + 3 nhỏ nhất Vậy A lớn nhất là 1/3 khi x = 1
Tìm giá trị nhỏ nhất của biểu thức: (x+2)^2 + (y-3)^2 + 1
tìm giá trị lớn nhất của biểu thức: \(\frac{1}{\left(x-2\right)^2+2}\)
1 )Vì \(\left(x+2\right)^2\ge0;\left(y-3\right)^2\ge0\)
\(\Rightarrow\left(x+2\right)^2+\left(y-3\right)^2\ge0\)
\(\Rightarrow\left(x+2\right)^2+\left(y-3\right)^2+1\ge1\)
Dấu "=: xảy ra <=> \(\orbr{\begin{cases}\left(x+2\right)^2=0\\\left(y-3\right)^2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\y=3\end{cases}}}\)
Vậy ........
2 ) \(\frac{1}{\left(x-2\right)^2+2}\ge\frac{1}{2}\)
Dấu "=" xảy ra <=> x = 2
Vậy ..........
Tìm giá trị nhỏ nhất của các biểu thức sau
A=\(x^2-4x+1\) \(B=4x^2+4x+11\)
\(C=\left(x-1\right)\left(x+3\right)\left(x+2\right)\left(x+6\right)\)
\(D=2x^2+y^2-2xy+2x-4y+9\)
Tìm giá trị lớn nhất của các biểu thức sau
\(E=5-8x-x^2\)
\(F=4x-x^2+1\)
a) Tìm giá trị lớn nhất của biểu thức: B= 5-\(\left|\frac{1}{3}x+2\right|\)
b) Tìm giá trị nhỏ nhất của biểu thức:C=\(\left|\frac{1}{2}x-3\right|+\left|\frac{1}{2}x+5\right|\)
a)Ta thấy:
\(-\left|\frac{1}{3}x+2\right|\le0\)
\(\Rightarrow5-\left|\frac{1}{3}x+2\right|\le5-0=5\)
\(\Rightarrow B\le5\)
Dấu "=" xảy ra khi x=-6
Vậy MaxB=5<=>x=-6
b)Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\).Ta có:
\(\left|\frac{1}{2}x-3\right|+\left|\frac{1}{2}x+5\right|\ge\left|\frac{1}{2}x-3+5-\frac{1}{2}x\right|=2\)
\(\Rightarrow C\ge2\)
Dấu "=" xảy ra khi \(\orbr{\begin{cases}x=6\\x=-10\end{cases}}\)
Vậy MinC=2<=>x=6 hoặc -10