cmr: n(2n+1)(7n+1) chia het cho 6
1, Chứng minh n(2n+7)x(7n+1) chia het cho 6
\(B=n\left(2n+7\right)\left(7n+1\right)\)
ta cần chứng minh B chia hêt cho 2 và cho 3 mọi n thuộc N
(*) C/m B chia hết cho 2
với n chẵn hay n=2k hiển nhiên B chia cho 2
với n lẻ hay n=2k+1 =>(7n+1)=7(2k+1)+1=14k+2=2(7k+1) chia hết cho 2
=> B chia hết cho 2 (*) dduocj c/m
(**)c/m B chia hết cho 3
với n chia hết cho 3; n=3k hiển nhiên B chia hết cho 3
với n chia 3 dư 1: n=3k+1 => (2n+7)=2(3k+1)+7=6k+2+1=6k+3=3(3k+1) chia hết cho 3
với n chia 3 dư 2: n=3k+2 => (7n+1)=7(3k+2)+1=21k+14+1=21k+15=3(7k+5) chia hét cho 3
(**) dduocj c/m
(*) &(**) => B chia hết cho 6=> dpcm
2n+9chia het cho n+2
7n+25 chia het cho n-4
7n chia het cho 4n-1
Mk gợi ý câu 1 nha
Đặt \(A=\frac{2n+9}{n+2}\left(ĐKXĐ:n\ne-2\right)\)
Ta có:\(A=\frac{2n+9}{n+2}=\frac{2\left(n+2\right)+5}{n+2}=2+\frac{5}{n+2}\)
Để A thuộc Z ( mk nghĩ chắc là vậy ) thì 5 chia hết cho n+2
Hay n+2 thuộc Ư (5) . Vậy Ư (5) là:\(\left[1,-1,5,-5\right]\)
Thay vào là tìm đc
2n + 9 chia hết cho n+2
mà n+2 chia hết cho n+2
suy ra 2n+9 - 2(n+2) chia hết cho n+2
suy ra 2n+9 - 2n - 4 chia hết cho n+2
5 chia hết cho n+2
n +2 thuộc {1;-1;5;-5}
n thuộc {-1; -3; 3; -8}
b) 7n + 25 chia hết cho n-4
n-4 chia hết cho n-4
suy ra 7n+25 - 7 (n-4) chia hết cho n-4
7n+25 - 7n + 28 chia hết cho n-4
53 chia hết cho n-4
n-4 thuộc {1;-1;53;-53}
n thuộc {5; 3; 57;-49}
c) làm tương tự nhé
CMR : n(2n + 1)(7n + 1) chia hết cho 6
CMR n^3 - 2n^2 + 7n - 7 chia het cho n^2 + 3 voi moi n thuoc Z
Tìm n để
n+11chia hết cho n-1
7n chia hết cho n-3
n^2 +2n+6 chia het cho n+4
Câu 1: Quần đảo
Câu 2:Núi Thái Sơn
Câu 3:Ngọc trai
Câu 4:Cái bóng
Câu 5:Đường đời
Câu 6:Cắm ống hút xuống
Hà Việt Sơn nhầm câu hỏi rồi
CMR: A= n ( n + 1 ) ( 2n + 1 ) chia het cho 6
Bài 1:
$5a+8b\vdots 3$
$\Leftrightarrow 5a+8b-3(2b+2a)\vdots 3$
$\Leftrightarrow 5a+8b-6b-6a\vdots 3$
$\Leftrightarrow 2b-a\vdots 3$
Ta có đpcm.
Bài 2. Bổ sung thêm điều kiện $n$ là số tự nhiên.
Ta có: $A=n(2n+7)(7n+7)=7n(2n+7)(n+1)$
Vì $n,n+1$ là 2 số tự nhiên liên tiếp nên sẽ tồn tại 1 số chẵn và 1 số lẻ
$\Rightarrow n(n+1)\vdots 2$
$\Rightarrow A=7n(n+1)(2n+7)\vdots 2(1)$
Mặt khác:
Nếu $n\vdots 3$ thì $A=7n(n+1)(2n+7)\vdots 3$
Nếu $n$ chia $3$ dư $1$ thì $2n+7$ chia hết cho $3$
$\Rightarrow A\vdots 3$
Nếu $n$ chia $3$ dư $2$ thì $n+1$ chia hết cho $3$
$\Rightarrow A\vdots 3$
Tóm lại $A\vdots 3(2)$
Từ $(1);(2)$ mà $(2,3)=1$ nên $A\vdots (2.3)$ hay $A\vdots 6$
chung minh n*(2n+7)*(7n-1) chia het cho 2;3;6
tim n sao cho
a) n+11 chia het cho n+1
b)7n chia het cho n-3
c)n^2+2n+ chia het cho n+4
d)n^2+n+1 chia het cho n+1
nho cac ban giai ho mik roi mik tick cho, cam on