Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mavis Dracula
Xem chi tiết
Ngô Văn Tuyên
Xem chi tiết
Ngô Văn Tuyên
Xem chi tiết
Ngô Văn Tuyên
Xem chi tiết
Ngu Người
Xem chi tiết
Thầy Giáo Toán
4 tháng 9 2015 lúc 23:35

Điều kiện xác định phương trình \(-2\le x\le2.\)

Phương trình tương đương với \(3x-2=0\)  hoặc

\(\frac{1}{\sqrt{2x+4}+2\sqrt{2-x}}=\frac{2}{\sqrt{9x^2+16}}\leftrightarrow\sqrt{9x^2+16}=2\sqrt{2x+4}+4\sqrt{2-x}\)

 

Trường hợp 1. \(3x-2=0\leftrightarrow x=\frac{3}{2}.\)

Trường hợp 2. \(\sqrt{9x^2+16}=2\sqrt{2x+4}+4\sqrt{2-x}\).

Ta đánh giá vế trái như sau: theo bất đẳng thức Bunhia \(\sqrt{9x^2+16}\ge\sqrt{6}x+\frac{4}{\sqrt{3}}\).

Mặt khác vế phải không vượt quá \(\sqrt{3+2\sqrt{2}}\cdot\sqrt{\frac{8x+16}{3+2\sqrt{2}}}+\sqrt[4]{2}\cdot\sqrt{\frac{32-16x}{\sqrt{2}}}\le\sqrt{6}x+\frac{4}{\sqrt{3}}\)

Vì vậy ta có dấu bằng xảy ra, hay \(x=\frac{4\sqrt{2}}{3}.\)

Ngu Người
4 tháng 9 2015 lúc 20:57

Trần Thị Diễm Quỳnh ảo tưởng sức manh ak

Cửu Lục Nguyệt
Xem chi tiết
Trang-g Seola-a
Xem chi tiết
Hoàng Lan
Xem chi tiết
Tuyển Trần Thị
11 tháng 9 2017 lúc 17:53

b,\(\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}+\sqrt{4\left(x+1\right)}-16\sqrt{x+1}=0\) (dk \(x\ge-1\)

\(\Leftrightarrow\sqrt{x+1}\left(4-3+2-16\right)=0\)

\(\Leftrightarrow\sqrt{x+1}.-13=0\)

\(\Leftrightarrow x=-1\)

Ling ling 2k7
Xem chi tiết
Lấp La Lấp Lánh
26 tháng 10 2021 lúc 10:03

6) ĐKXĐ: \(x\le-6\)

\(\sqrt{\left(x+6\right)^2}=-x-6\Leftrightarrow\left|x+6\right|=-x-6\)

\(\Leftrightarrow x+6=x+6\left(đúng\forall x\right)\)

Vậy \(x\le-6\)

7) ĐKXĐ: \(x\ge\dfrac{2}{3}\)

\(pt\Leftrightarrow\sqrt{\left(3x-2\right)^2}=3x-2\Leftrightarrow\left|3x-2\right|=3x-2\)

\(\Leftrightarrow3x-2=3x-2\left(đúng\forall x\right)\)

Vậy \(x\ge\dfrac{2}{3}\)

8) ĐKXĐ: \(x\ge5\)

\(pt\Leftrightarrow\sqrt{\left(4-3x\right)^2}=2x-10\)\(\Leftrightarrow\left|4-3x\right|=2x-10\)

\(\Leftrightarrow4-3x=10-2x\Leftrightarrow x=-6\left(ktm\right)\Leftrightarrow S=\varnothing\)

9) ĐKXĐ: \(x\ge\dfrac{3}{2}\)

\(pt\Leftrightarrow\sqrt{\left(x-3\right)^2}=2x-3\Leftrightarrow\left|x-3\right|=2x-3\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=2x-3\left(x\ge3\right)\\x-3=3-2x\left(\dfrac{3}{2}\le x< 3\right)\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=2\left(tm\right)\end{matrix}\right.\)