Tìm các số tự nhiên x,y,z thỏa mãn phương trình: 2016x+2017y=2018z
Bài 5: Có tìm được các số nguyên x,y,z sao cho:
(2016x - 2017y) - (2016x - 2018z) + (2017y - 2018z) = 2018 không? Giải thích
(2016x - 2017y) - (2016x - 2018z) + (2017y - 2018z) = 2018
=> 2016x - 2017y - 2016x + 2018z + 2017y - 2018z = 2018
=> 2016x - 2016x + 2017y - 2017y + 2018z - 2018z = 2018
=> 0x + 0y + 0z = 2018 (vô lí)
Vậy không tìm được các số nguyên x, y, z thỏa mãn đề bài
(2016x - 2017y) - (2016x - 2018z) + (2017y - 2018z) = 2018
=> 2016x - 2017y - 2016x + 2018z + 2017y -2018z = 2018
=> 2016x - 2016x + 2017y - 2017y + 2018z - 2018z=2018
=> 0x + 0y + 0z=2018(vô lý)
Vậy ko tìm được các số nguyên x,y,z thoả mãn đề bài.
Có tìm được các số nguyên x, y, z sao cho:
(2016x - 2017y) - (2016x - 2018z) + (2017y - 2018z) = 2018 không? Giải thích.
\(\left(2016x-2017y\right)-\left(2016x-2018z\right)+\left(2017y-2018z\right)\)
\(=2016x-2017y-\left(2016x-2018x\right)+2017y-2018z\)
\(=2016x-2016x+2018z-2018z\)
\(=0\)
Vậy \(\left(2016x-2017\right)-\left(2016x-2018z\right)+\left(2017y-2018z\right)\ne2018\)
Ta có: \(\left(2016x-2017y\right)-\left(2016x-2018z\right)+\left(2017y-2018z\right)\)
\(=2016x-2017y-2016x+2018z+2017y-2018z\)
\(=0\) ( khác với đề bài )
\(\Rightarrow\) không tìm được các số nguyên x, y, z
Vậy...
Tìm các cặp số nguyên (x; y) thỏa mãn: x2 + xy -2016x - 2017y -2018 =0
Tìm các cặp số nguyen (x; y) thỏa mãn: x2 +xy - 2016x -2017y -2018 =0
Tìm các số tự nhiên x , y , z thỏa mãn phương trình : 2016^x+2017^y=2018^z
LƯU Ý
Các bạn học sinh ĐƯỢC đăng các câu hỏi không liên quan đến Toán, hoặc các bài toán linh tinh gây nhiễu diễn đàn. Online Math không thể áp dụng các biện pháp như trừ điểm, thậm chí mở vĩnh viễn tài khoản của bạn nếu vi phạm nội quy nhiều lần
\(x,y,z\ne0\)vế trái luôn lẻ VP luon chan=>\(x,y,z\)phai co so =0
y,z=0 vo nghiem
x=0=> 1+2017^y=2018^z
co nghiem (x,y,z)=(0,1,1)
tồn tại hay ko số nguyên x;y thỏa mãn : \(2016x^{2017}+2017y^{2018}=2019\)
+, Nếu x = 0 hoặc x = 1 ; y = 0 hoặc y = 1 thay vào 2016x2017 + 2017y2018 = 2019 thì 2016.02017 + 2017.02018 = 4033 ( Loại )
+, Nếu x,y \(\ge\)2 thay vào 2016 . 22017 + 2017 . y 2018 = 2019 ( Vô lí , loại )
Do đó không tồn tại 2 số nguyên x;y thỏa mãn điều kiện bài toán
Vậy không tồn tại ......
Hok tốt
mình xin nhắc nhẹ bạn là nguyên chứ ko phải nguyên dương nên x^2017 có thể âm nhé
Nếu là số nguyên thì cậu cứ thử như vậy thì cũng có trường hợp nào thỏa mãn đề bài .
Hok tốt
\(2016x^{2017}+2017y^{2018}=2019\) tính x,y thỏa mãn
Tìm 3 số x,y,z thỏa mãn điều kiện: 2018x-y2=2018y-z2=2018z-x2=2017
Tìm các số tự nhiên (x,y) thỏa mãn phương trình:3x3-xy=3