Cm nếu n lẻ thì n^4+9(9-2n^2) chia hết cho 16
1.CMR trong 12 số tự nhiên bất kì có thể tìm đc 2 số có hiệu của chúng chia hết cho 11
2.CMR trong 15 số tự nhiên bất kì có thể tìm đc 2 số có hiệu của chúng chia hết cho 14
3.CM tồn tại 1 số chia hết cho 1995 mà các chữ số của số đó chỉ gồm các chữ số 2 và chữ số 0
4.CMR nếu có n số tự nhiên có tích bằng n và có tổng bằng 2012 thì n chia hết cho 4
5.tìm số tự nhiên n sao cho :
a) n+3 chia hết cho n-2 ( n>2)
b)2n+9 chia hết cho n-3 ( n>3)
c)(16-3n ) chia hết cho (n+4) với n<6
d) (5n+2) chia hết cho (9-2n)
Bài 5 : ( Mình dùng dấu chia hết là dấu hai chấm )
a) n+3 : n-2
=> n+3 : n+3-5
=> n+3 : 5 ( Vì n+3 : n+3 )
=> n+3 là Ư(5) => Bạn tự làm tiếp nhé!
b) 2n+9 : n-3
=> n + n + 11 - 3 : n-3
=> n + 11 : n-3
=> n + 14 - 3 : n-3
=> 14 : n - 3 ( Vì n - 3 : n-3 )
=> n-3 là Ư(14) => Tự làm tiếp
c) + d) thì bạn tự làm nhé!
-> Chúc bạn học giỏi :))
5n+2 chia hết cho 9-2n
16-3n chia hết n+4
Ta có ; 5n + 2 chia hết cho 9 - 2n
=> -10n - 4 chia hết cho 9 - 2n
=> -10n + 45 - 49 chia hết cho 9 - 2n
=> 5(9 - 2n) - 49 chia hết cho 9 - 2n
=> 49 chia hết cho 9 - 2n
=> 9 - 2n thuộc Ư(49) = {1;7;49}
=> 2n = {8;2}
=> n = 1;4
Ai biết làm câu 16-3n chia hết cho n+4 không ạ
5n + 2 ⋮ 9 - 2n
=> -10n - 4 ⋮ 9 - 2n
=> -10n + 45 - 49 ⋮ 9 - 2n
=> 5(9 - 2n) - 49 ⋮ 9 - 2n
=> 49 ⋮ 9 - 2n
=> 9 - 2n thuộc Ư(49) = {1;7;49}
=> 2n ∈ {8;2}
=> n ∈ {4;1}
(16-3n) chia hết cho (n+4) với n< 6
(5n+2) chia hết cho (9+2n) với n <5
Vì : (16-3n) chia hết cho (n +4)
Nên 2(16-3n)= (2.16-2.3n)
=(32-6n) chia hết cho (n +4)
Vì : (n+4) chia hết cho (n+4)
Nên 6(n+4)= (6.n+6.4)
=(6n+24) chia hết cho(n +4)
Vì : (32-6n) và (6n+24) chia hết cho (n +4)
Nên (32-6n) + (6n+24) chia hết cho (n +4) (áp dụng tính chất chia hết )
(32-6n) + (6n+24) = (32 - 6n + 6n + 24) = (32 + 6n - 6n + 24)
= (32 + 0 + 24) = 56 chia hết cho (n +4)
56 chia hết cho (n +4) => (n +4) thuộc Ư(56)= (1;2;4;7;8;14;28;56)
=> n thuộc Ư(56)= (1;2;4;7;8;14;28;56) - 4
=(0;3;4;10;24;52) (vì n thuộc N nên ko có 1 - 4 và 2 - 4)
mà n< 6 nên n thuộc (0;3;4)
Trường hợp 1 : n=0 thì (16-3n) / (n +4)
= (16-3.0) / (0 +4)
= (16 - 0) / 4
= 16 / 4 (Hết. Trường hợp 1 có thể )
Trường hợp 1 : n=3 thì (16-3n) / (n +4)
= (16-3.3) / (3 +4)
=(16- 9 ) / 7
= 7 / 7 (Hết. Trường hợp 2 có thể )
Trường hợp 1 : n=4 thì (16-3n) / (n +4)
= (16-3.4) / (4 +4)
=(16- 12 ) / 8 = 4/8 (Ko chia hết .Trường hợp 3 không thể )
Vậy n thuộc tập hợp ( 0;3)
Hay n=0 hoặc n=3
CM:
a) (2n+3)2-9 chia hết cho 4 với n thuộc Z
b) n2(n+1)+2n(n+1) chia hết cho 6 với n thuộc Z.
c) n(2n-3)-2n(n+1) chia hết cho 5 với n thuộc Z.
c) \(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
\(=-5n\)Vì n nguyên
\(\Rightarrow-5n⋮5\left(đpcm\right)\)
a) \(\left(2n+3\right)^2-9\)
\(=\left(2n+3-3\right)\left(2n+3+3\right)\)
\(=2n\left(2n+6\right)\)
\(=4n\left(n+3\right)\)
Do \(n\in Z\Rightarrow n+3\in Z\)
\(\Rightarrow4n\left(n+3\right)⋮4\left(đpcm\right)\)
b) \(n^2\left(n+1\right)+2n\left(n+1\right)\)
\(=\left(n+1\right)\left(n^2+2n\right)\)
\(=n\left(n+1\right)\left(n+2\right)\)
Vì \(n\in Z\Rightarrow\left\{{}\begin{matrix}x+1\in Z\\n+2\in Z\end{matrix}\right.\)
Mà n,n+1,n+2 là 3 sô nguyên liên tiếp
\(\Rightarrow n\left(n+1\right)\left(n+3\right)⋮6\left(dpcm\right)\)
tìm STN n sao cho
(16-3a)chia hết cho (n+4)
(5n+2)chia hết cho(9-2n)
Phần đầu sai vì a với n chẳng liên quan đến nhau gì cả tran thi minh thuy ạ
a)Ta có: 16-3n chia hết cho n+4
=>-(16-3n) chia hết cho n+4
=>3n-16 chia hết cho n+4
=>(3n+12)-12-16 chia hết cho n+4
=>3(n+4)-28 chia hết cho n+4
Mà 3(n+4) chia hết cho n+4
=>28 chia hết cho n+4
=>n+4 thuộc Ư(28)={1;2;4;7;14;28}
=>n thuộc {-3;-2;0;3;10;24}
Mà n là STN
=>n thuộc {0;3;10;24}
b)Ta có: 5n+2 chia hết cho 9-2n
=>5n+2 chia hết cho -(9-2n)
=>(4n-18)+n+2+18 chia hết cho 2n-9
=>2(2n-9)+n+20 chia hết cho 2n-9
Mà 2(2n-9) chia hết cho 2n-9
=>(n+20) chia hết cho 2n-9
=>2(n+20)-(2n-9) chia hết cho 2n-9
=>49 chia hết cho 2n-9
=>2n-9 thuộc {1;7;49}
=>2n thuộc {10;16;58}
=>n thuộc {5;8;29}
tìm số tự nhiên n sao cho
a, n+9 chia hết cho n-2
b,2n+5 chia hết cho n+2
c,6n-16 chia hết cho 2n + 1
n+9 chia hết cho n-2
n+9= (n-2)+11
Để n+9 chia hết cho n-2 thì 11 chia hết cho n-2
n-2 thuộc Ư(11)={1,11}
n-2=1 => n=1+2 => n=3
n-2=11=> n=11+2=> n=13
b) 2n+5 chia hết cho n+2
2n+5=2(n+2)+1
để 2n+5 chia hết cho n+2 thì 1: n+2
=> n+2 thuộc Ư(1)={1}
n+2=1 => n=1-2 => n=-1
c) 6n-16 chia hết cho 2n+1
6n-16=3(2n+1)-19
để 6n-16 chia hết cho 2n+1 thì 19 chia hết cho 2n+1
=> 2n+1 thuộc Ư(19)={19}
=> 2n+1=1 => 2n=1+1 => 2n=2 => n=2:2 => n=1
tương tự như vậy bn tự giải số còn lại nha
a)\(n+9=n-2+11\)chia hết cho n-2
mà n-2 chia hết cho n-2 => 11 chia hết cho n-2
=>\(n-2\inƯ\left(11\right)=\left\{-11;-1;1;11\right\}\)
\(\Rightarrow n\in\left\{-9;1;3;13\right\}\)
b)\(2n+5=\left(2n+4\right)+1=2\left(n+2\right)+1\) chia hết cho n+2
mà 2(n+2) chia hết cho n+2 => 1 chia hết cho n+2
=>\(n+2\in\left\{-1;1\right\}\)
=>\(n\in\left\{-3;-1\right\}\)
\(6n-16=\left(6n+3\right)-19=3\left(2n+1\right)-19\) chia hết cho 2n+1
mà 3(2n+1) chia hết cho 2n+1 => 19 chia hết cho 2n+1
=>\(2n+1\inƯ\left(19\right)=\left\{-19;-1;1;19\right\}\)
=>\(2n\in\left\{-20;-2;0;18\right\}\)
=>\(n\in\left\{-10;-1;0;9\right\}\)
Vì n là số tự nhiên nên \(n\in\left\{0;9\right\}\)
---
à quên, vì n là số tự nhiên nên phần a n thuộc {1;3;13}, phần b không có số tự nhiên n thỏa mãn
Tìm n thuộc số tự nhiên:
a) (16 - 3n) chia hết cho (n + 4) ( n < 6)
b) ( 5n + 2) chia hết cho (9 - 2n) ( n < 5)
a) 16 - 3n chia hết cho n +4
n+ 4 chia hết cho n+4
=) (16 - 3n ) - ( n + 4) chia hết cho n + 4
16 - 3n - n- 4 chia hết n + 4
12 +4n chia hết cho n +4
= ) n +4 thuộc Ư ( 12 + 4n )
?????
hic mới biết làm tới đây thông cảm
Tìm n thuộc N
a, n+3 chia hết cho n
b,35 - 12n chia hết cho n ( n < 3)
c, 16 - 3n chia hết cho n + 4 ( n < 6 )
d,5n + 2 chia hết cho 9 - 2n ( n < 5 )
e , 6n + 9 chia hết cho 4n - 1 ( n lớn hơn hoặc bằng 1 )
a) n + 3 chia hết cho n
Vì n chia hết cho n nên để n + 3 chia hết cho n thì 3 chia hết cho n
Từ đó suy ra : n \(\in\)Ư ( 3 ) = { 1 ; 3 }
b) 35 - 12n chia hết cho n ( n < 3 )
Vì 12n chia hết cho n nên để 35 - 12n chia hết cho n thì 35 chia hết cho n
từ đó suy ra : n \(\in\)Ư ( 35 ) = { 1 ; 5 ; 7 ; 35 }
Mà n < 3 nên n = 1
Vậy n = 1
c) 16 - 3n chia hết cho n + 4 ( n < 6 )
theo bài ra ta có :
16 - 3n chia hết cho n + 4
28 . ( 3n + 12 ) chia hết cho n + 4
28 - 3 . ( n + 4 ) chia hết cho n + 4
vì 3 . ( n + 4 ) chia hết cho n + 4 nên để 28 - 3 . ( n + 4 ) chia hết cho n + 4 thì 28 chia hết cho n + 4
Từ đó suy ra : n + 4 \(\in\)Ư ( 28 ) = { 1 ; 2 ; 4 ; 7 ; 14 ; 28 }
mà n < 6 nên n = { 1 ; 2 ; 4 }
vậy n = { 1 ; 2 ; 4 }
d) 5n + 2 chia hết cho 9 - 2n ( n < 5 )
ta có : 9 - 2n chia hết cho 9 - 2n nên 5 . ( 9 - 2n ) chia hết cho 9 - 2n ( 1 )
Vì 5n + 2 chia hết cho 9 - 2n nên 2 . ( 5n + 2 ) chia hết cho 9 - 2n ( 2 )
Từ ( 1 ) và ( 2 ) ta có :
5 . ( 9 - 2n ) + 2 . ( 5n + 2 ) chia hết cho 9 - 2n
=> 45 - 10n + 10n + 4 chia hết cho 9 - 2n
45 + 4 chia hết cho 9 - 2n
49 chia hết cho 9 - 2n
để 5n + 2 chia hết cho 9 - 2n thì 49 chia hết cho 9 - 2n
Vậy 9 - 2n \(\in\)Ư ( 49 ) = { 1 ; 7 ; 49 }
Vì 9 - 2n \(\le\)9 nên 9 - 2n \(\in\){ 1 ; 7 }
\(\Rightarrow\orbr{\begin{cases}9-2n=7\\9-2n=1\end{cases}\Rightarrow\orbr{\begin{cases}n=1\\n=4\end{cases}}}\)
a) n + 3 chia hết cho n ( n thuộc N )
Ta có : n chia hết cho n
n + 3 chia hết cho n
=> 3 chia hết cho n
=> n thuộc Ư ( 3 )
=> n thuộc { 1 ; 3 }
Tìm n thuộc N
a, n+3 chia hết cho n
b,35 - 12n chia hết cho n ( n < 3)
c, 16 - 3n chia hết cho n + 4 ( n < 6 )
d,5n + 2 chia hết cho 9 - 2n ( n < 5 )
e , 6n + 9 chia hết cho 4n - 1 ( n lớn hơn hoặc bằng 1 )
a)n+3\(⋮\)n b)35-12n\(⋮\)n
n\(⋮\)n 12n\(⋮\)n
n+3-n\(⋮\)n 35-12n-12n\(⋮\)n
3\(⋮\)n 35\(⋮\)n
\(\Rightarrow\)n={1;3} vì n<3 nên :
\(\Rightarrow\)n={1}
Làm tượng tự với các câu sau
Có n + 3 chia hết cho n
=> n chia hết cho n
=> 3 chia hết cho n
=> n thuộc Ư(3)
n = { 1 ; 3}
1/ CM: Tỏng các Lập phương của ba số nguyên chia hết cho 6 chỉ khi tổng 3 số đó chia hết cho 6
2/ Cho 2 số lẽ có hiệu các lập phương chia hết cho 8 chứng minh hiệu hai số đó cũng chia hét cho 8
3/CM : Nếu bình phương thiếu của tổng hai số nguyên chia hết cho9 thì ttichs hai số đó cũng chia hết cho 9
4/ CM tổng các lập phương của 3 số nguyên liên tiếp thì chia hết cho 9
5/CM n^5-5n^3+4n chia hết cho 120 vơi mọi số nguyên n
6/CM n^3+3n^2+n+3 chia hết cho 48 vơi mọi số lẻ n
7/ CM n^4+4n^3-4n^2+16n chia hết chi 384 với mọi số nguyên n
8/CMR với mọi số nguyên n thì n^2+11n+39 không chia hết chi 49
9/ CM lấy tich của 3 số nguyên liên tiếp +1 , được một số chính phương
10/CMR với mọi số tự nhiên n>1:
a/ số n^4 +4 là hợp số
b/ số n^4+4k^4 là hợp số (k là số tự nhiên)
11/ Tính giá trị của biểu thức (1+ab-b^4)(a^4+1) với a=2^7, b=5
12/ Số 2^32+1 có là số nguyên tố không?
13/ CMR Số 11....1-22...2 là một số chính phương(có 2n số 1 và n số 2)
14/ CMR số 111....12...2 (có n số 1 và n số 2) là tích hai số nguyên liên tiếp với mọi số nguyên dương n
15/ Tìm số có 3 chữ số sao cho chia nó cho 11 được thương bằng tổng các chữ số bị chia
sao dài dòng quá vậy, như thế thì ai mà làm nổi, bạn phải hỏi từng bài 1 chứ
Nhìn là muốn chạy rùi
^-^
p thử lên mạng mà tra từng câu 1 mik nghĩ là có