Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Công Minh Hoàng
Xem chi tiết
Nguyễn Việt Hoàng
29 tháng 9 2019 lúc 7:15

\(A=\frac{4x}{x^2-2x}+\frac{3}{2-x}+\frac{12x}{x^3-4x}\)

\(A=\frac{4x}{x\left(x-2\right)}-\frac{3}{x-2}+\frac{12x}{x\left(x-2\right)\left(x+2\right)}\)

\(A=\frac{4x\left(x+2\right)-3x\left(x+2\right)+12x}{x\left(x-2\right)\left(x+2\right)}\)

\(A=\frac{x\left(x+2\right)+12x}{x\left(x-2\right)\left(x+2\right)}\)

\(A=\frac{x^2+2x+12x}{x\left(x-2\right)\left(x+2\right)}\)

\(A=\frac{x^2+14x}{x\left(x-2\right)\left(x+2\right)}\)

trần bảo anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 9 2023 lúc 9:23

c: C=125x^3+150x^2+60x+8+125x^3-150x^2+60x-8-2(x^2-4)

=250x^3+120x-2x^2+8

=250x^3-2x^2+120x+8

d: D=(4x)^3-3^3-(4x)^3-3^3

=64x^3-27-64x^3-27

=-54

HT.Phong (9A5)
3 tháng 9 2023 lúc 9:25

c) \(C=\left(5x+2\right)^3+\left(5x-2\right)^3-2\left(x-2\right)\left(x+2\right)\)

\(=\left[\left(5x\right)^3+3\cdot\left(5x\right)^2\cdot2+3\cdot5x\cdot2^2+2^3\right]+\left[\left(5x\right)^3-3\cdot\left(5x\right)^2\cdot2+3\cdot5x\cdot2^2-2^3\right]-2\left(x^2-4\right)\)

\(=125x^3+150x^2+60x+8+125x^3-150x^2+60x-8-2x^2+8\)

\(=\left(125x^3+125x^3\right)+\left(150x^2-150x^2-2x^2\right)+\left(60x+60x\right)+\left(8-8+8\right)\)

\(=250x^3-2x^2+120x+8\)

d) \(D=\left(4x-3\right)\left(16x^2+12x+9\right)-\left(4x+3\right)\left(16x^2-12x+9\right)\)

\(=\left(4x\right)^3-3^3-\left[\left(4x\right)^3+3^3\right]\)

\(=64x^3-27-\left(64x^3+27\right)\)

\(=64x^3-27-64x^3-27\)

\(=-27-27\)

\(=-54\)

Patepippip
Xem chi tiết
Nguyen Thi Lih
Xem chi tiết
Trịnh Thành Công
3 tháng 12 2016 lúc 20:41

Đặt \(A=\frac{x^2+x-6}{x^3-4x^2-18x+9}\)

       \(A=\frac{x^2+3x-2x-6}{x^3+3x^2-7x^2-21x+3x+9}\)

        \(A=\frac{x\left(x+3\right)-2\left(x+3\right)}{x^2\left(x+3\right)-7x\left(x+3\right)+3\left(x+3\right)}\)

         \(A=\frac{\left(x-2\right)\left(x+3\right)}{\left(x^2-7x+3\right)\left(x+3\right)}\)

         \(A=\frac{x-2}{x^2-7x+3}\)

Linh Bông
Xem chi tiết
Trí Tiên
13 tháng 2 2020 lúc 11:06

Mình thử nha :33

ĐKXĐ : \(x\ne-3,x\ne-26,x\ne-6,x\ne1\)

Ta có :

\(A=\left[\frac{3}{2}-\left(\frac{x^4\left(x^2+1\right)-x^4-1}{x^2+1}\right)\cdot\frac{x^3-4x^2+\left(x-4\right)}{x^6\left(x+6\right)-\left(x+6\right)}\right]:\frac{\left(x+3\right)\left(x+26\right)}{3\left(x-2\right)\left(x+6\right)}\)

\(=\left[\frac{3}{2}-\left(\frac{x^6-1}{x^2+1}\right)\cdot\frac{\left(x-4\right)\left(x^2+1\right)}{\left(x+6\right)\left(x^6-1\right)}\right]\cdot\frac{3\left(x-2\right)\left(x+6\right)}{\left(x+3\right)\left(x+26\right)}\)

\(=\left[\frac{3}{2}-\frac{x-4}{x+6}\right]\cdot\frac{3\left(x-2\right)\left(x+6\right)}{\left(x+3\right)\left(x+26\right)}\)

\(=\frac{x+26}{2\left(x+6\right)}\cdot\frac{3\left(x-2\right)\left(x+6\right)}{\left(x+3\right)\left(x+26\right)}\)

\(=\frac{3\left(x-2\right)}{2\left(x+3\right)}\)

Vậy : \(A=\frac{3\left(x-2\right)}{2\left(x+3\right)}\left(x\ne-3,x\ne-26,x\ne-6,x\ne1\right)\)

Khách vãng lai đã xóa
Phan Hải Đăng
Xem chi tiết
Phạm Thị Thùy Linh
2 tháng 7 2019 lúc 21:11

\(A=\)\(\frac{x|x-2|}{x^2+8x-20}+12x-3.\)

\(=\frac{x|x-2|}{\left(x-2\right)\left(x+10\right)}+12x-3\)

Nếu \(x\ge2\Rightarrow x-2\ge0\Leftrightarrow|x-2|=x-2\)

\(\Rightarrow A=\frac{x\left(x-2\right)}{\left(x-2\right)\left(x+10\right)}+12x-3=\frac{x}{x+10}+12x-3\)

Nếu \(x< 2\Rightarrow x-2< 0\Leftrightarrow|x-2|=-\left(x-2\right)\)

\(\Rightarrow A=\frac{-x\left(x-2\right)}{\left(x-2\right)\left(x+10\right)}+12x-3=\frac{-x}{x+10}+12x-3\)

Phan Hải Đăng
2 tháng 7 2019 lúc 21:13

Cảm ơn bạn

Phan Hải Đăng
Xem chi tiết
Đức Lộc
Xem chi tiết
Pham Van Hung
25 tháng 11 2018 lúc 9:51

\(\frac{x^2+x-6}{x^3-4x^2-18x+9}=\frac{x^2+3x-2x-6}{x^3+3x^2-7x^2-21x+3x+9}\)

\(=\frac{x\left(x+3\right)-2\left(x+3\right)}{x^2\left(x+3\right)-7x\left(x+3\right)+3\left(x+3\right)}\)

\(=\frac{\left(x+3\right)\left(x-2\right)}{\left(x+3\right)\left(x^2-7x+3\right)}=\frac{x-2}{x^2-7x+3}\) (điều kiện: x khác -3)

Huyền Nhi
25 tháng 11 2018 lúc 10:10

t phân tích \(x^2-7x+3\) được như này =)) 

\(x^2-7x+3=x^2-2.x.\frac{7}{2}+\left(\frac{7}{2}\right)^2-\frac{49}{4}+3\)

\(=\left(x-\frac{7}{2}\right)^2-\frac{37}{4}\)

\(=\left(x-\frac{7}{2}\right)^2-\left(\frac{\sqrt{37}}{2}\right)^2\)

\(=\left(x-\frac{7}{2}-\frac{\sqrt{37}}{2}\right)\left(x-\frac{7}{2}+\frac{\sqrt{37}}{2}\right)\)

\(=\left(x-\frac{7+\sqrt{37}}{2}\right)\left(x-\frac{7-\sqrt{37}}{2}\right)\)

Huyền Nhi
25 tháng 11 2018 lúc 10:03

\(\frac{x^2+x-6}{x^3-4x^2-18x+9}\)\(=\frac{x^2+3x-2x-6}{x^2+3x^2-7x^2-21x+3x+9}\)

                   \(=\frac{x\left(x+3\right)-2\left(x+3\right)}{\left(x^3+3x^2\right)-\left(7x^2+21x\right)+\left(3x+9\right)}\)

                     \(=\frac{\left(x+3\right)\left(x-2\right)}{x^2\left(x+3\right)-7x\left(x+3\right)+3\left(x+3\right)}\)

                   \(=\frac{\left(x+3\right)\left(x-2\right)}{\left(x+3\right)\left(x^2-7x+3\right)}\)

                  \(=\frac{x-2}{x^2-7x+3}\)

Xong rồi phân tích \(x^2-7x+3\) nữa thì phải =))

trần hoàng anh
Xem chi tiết