Tìm a,b thoả mãn : \(a^2+\frac{1}{b^2}=a^3+\frac{1}{b^3}=a^4+\frac{1}{b^4}\)
Bạn nào học qua rồi thì giải hộ tớ bài này với.
1.Cho a, b, c là độ dài 3 cạnh của 1 tam giác
Chứng minh: (a+b-c)(b+c-a)(c+a-b)<=abc
2.Cho a, b, c>0 thoả mãn ab+bc+ca=1.
Tim min M = \(\frac{3a^2b^2+1}{c^2+1}+\frac{3b^2c^2+1}{a^2+1}+\frac{3c^2a^2+1}{b^2+1}\)
3.Cho a,b,c>0 thoả mãn a+b+c=3.
Tìm min N = \(\frac{3+a^2}{b+c}+\frac{3+b^2}{c+a}+\frac{3+c^2}{a+b}\)
4.Cho a, b, c>0 thoả mãn abc=1
Chứng minh: \(\frac{ab}{a^5+b^5+ab}+\frac{bc}{b^5+c^5+bc}+\frac{ca}{c^5+a^5+ac}<=1\)
ae ơi....mai mik đik hk rồi...ai lm giúp mik vs.
1) Cho \(a=x+\frac{1}{x};b=y+\frac{1}{y};c=z+\frac{1}{z};z=xy\)
Tính \(M=a^2+b^2+c^2-abc\)
2) Tìm a,b,c thoả mãn: \(a^2+\frac{1}{b^2}=a^3+\frac{1}{b^3}=a^4+\frac{1}{b^4}\)
ui mk bó tay vì chưa hok đến lóp 9!!! ^^
54746767765858578758788974686865876546456475675685785
Giải chi tiết hộ mk:
1/Tìm x, y nguyên thoả mãn \(x+y+xy+2=x^2+y^2\)
2/Cho a,b,c là các số thực dương thoả mãn điều kiện abc=1.chứng minh rằng:
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{3}{4}\)
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\)
Ta có:
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{8}+\frac{1+c}{8}\ge\frac{3a}{4}\)
\(\Leftrightarrow\frac{a^3}{\left(1+b\right)\left(1+c\right)}\ge\frac{6a-b-c-2}{8}\)
Tương tự ta có: \(\hept{\begin{cases}\frac{b^3}{\left(1+c\right)\left(1+a\right)}\ge\frac{6b-c-a-2}{8}\\\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{6c-a-b-2}{8}\end{cases}}\)
Cộng vế theo vế ta được
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{6a-b-c-2}{8}+\frac{6b-c-a-2}{8}+\frac{6c-a-b-2}{8}\)
\(=\frac{a+b+c}{2}-\frac{3}{4}\ge\frac{3}{2}.\sqrt[3]{abc}-\frac{3}{4}=\frac{3}{2}-\frac{3}{4}=\frac{3}{4}\)
Bài 1 Rút gọn biểu thức
\(\frac{\left(x+\frac{1}{x^4}\right)-\left(x^4+\frac{1}{x^4}\right)-2}{\left(x+\frac{1}{x}\right)^4+x^2+\frac{1}{x^2}}.\frac{x^4+1999x^2+1}{2x^2}\)
Bài 2: Cho a,b,c thoả mãn
\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^2}{c^2+ca+a^2}=1006\)
tính giá trị biểu thức
M=\(\frac{a^3+b^3}{a^2+ab+b^2}+\frac{b^3+c^3}{b^2+bc+c^2}+\frac{c^3+a^3}{c^2+ca+a^2}\)
cho a,b,c la các số thực dương thoả mãn 2(a+b)+b=12. Tìm giá trị nhỏ nhất của biểu thức
P= \(\frac{1}{\left(a+3\right)^2}+\frac{4}{\left(b+4\right)^2}+\frac{8}{\left(c+5\right)^2}\)
Cho a;b;c>0 thoả mãn: \(\frac{1}{1+a}+\frac{2}{2+b}+\frac{3}{3+c}\le1\) 1. Tìm min S=abc
đặt x = a; y = b/2; z = c/3. khi đó ta có \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\le1.\)
quy đồng, nhân chéo ta được (1+x)(1+y) + (1+y)(1+z) + (1+z)(1+x) \(\le\)(1+x)(1+y)(1+z).
nhân phá ngoặc, rút gọn ta được x + y + z + 2 \(\le\)xyz. (1)
mặt khác ta có \(1\ge\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{9}{\left(1+x\right)+\left(1+y\right)+\left(1+z\right)}\ge\frac{9}{x+y+z+3}\)
nên x+ y + z \(\ge\)6 (2)
từ (1) và (2) suy ra xyz \(\ge\)8 hay S = abc \(\ge\)48.
dấu bằng xảy ra khi x = y = z = 2 hay a = 2; b = 4; c = 6.
vậy Min S = 48.
hình như cái BĐT ở dưới chỗ "Mặc khác ta có" sai
Cho a,b,c thuộc N*
Thoả mãn\(1=\frac{1}{2}+\frac{1}{3}+\frac{1}{7}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Tìm giá trị nhỏ nhất của a+b+c
Cho a,b,c là các số thực dương thay đổi và thoả mãn: \(a+b+c=\frac{3\sqrt{3}}{\sqrt{2}}\) . TÌM GTLN CỦA BIỂU THỨC:
\(M=\frac{1}{a^2+b^2+3}+\frac{1}{b^2+c^2+3}+\frac{1}{c^2+a^2+3}\)
We have:
\(M=1-\frac{1}{3}\Sigma_{cyc}\frac{a^2+b^2}{a^2+b^2+3}\)
Consider:
\(\Sigma_{cyc}\frac{a^2+b^2}{a^2+b^2+3}\ge\frac{3}{2}\)
\(VT\ge\frac{\left(\Sigma_{cyc}\sqrt{a^2+b^2}\right)^2}{2\left(a^2+b^2+c^2\right)+9}\)
Prove:
\(\frac{\left(\Sigma_{cyc}\sqrt{a^2+b^2}\right)^2}{2\left(a^2+b^2+c^2\right)+9}\ge\frac{3}{2}\)
\(\Leftrightarrow4\Sigma_{cyc}\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}\ge2\left(a^2+b^2+c^2\right)+27\)
Consider:
\(\Sigma_{cyc}\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}\ge\Sigma_{cyc}a^2+\Sigma_{cyc}ab\)
\(\Rightarrow4\Sigma_{cyc}\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}\ge4\Sigma_{cyc}a^2+4\Sigma_{cyc}ab\)
Now we need to prove:
\(4\Sigma_{cyc}a^2+4\Sigma_{cyc}ab=2\Sigma_{cyc}a^2+27\)
\(\Leftrightarrow2\left(a+b+c\right)^2=27\) (not fail)
\(\Rightarrow M\le\frac{1}{2}\)
Sign '=' happen when \(a=b=c=\sqrt{\frac{3}{2}}\)
cho a,b,c là các số thực dương thoả mãn abc=1 chứng minh bất đẳng thức:
\(\frac{1}{ab+a+2}+\frac{1}{bc+b+2}+\frac{1}{ca+a+2}\le\)\(\frac{3}{4}\)
với x,y >0 ta có : \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\Rightarrow\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)..\)
Áp dụng bất đẳng thức trên được:
\(\frac{1}{ab+a+2}=\frac{1}{\left(ab+1\right)+\left(a+1\right)}\le\frac{1}{4}\left(\frac{1}{ab+1}+\frac{1}{a+1}\right)=\frac{1}{4}\left(\frac{abc}{ab+abc}+\frac{1}{a+1}\right)=\frac{1}{4}\left(\frac{c}{c+1}+\frac{1}{a+1}\right)\left(1\right).\)( vì abc = 1 )
Chứng minh tương tự ta được : \(\frac{1}{bc+b+2}\le\frac{1}{4}\left(\frac{a}{a+1}+\frac{1}{b+1}\right)\left(2\right).\)
\(\frac{1}{ac+c+2}\le\frac{1}{4}\left(\frac{b}{b+1}+\frac{1}{c+1}\right)\left(3\right).\)
Cộng vế với vế các BĐT (1), (2) và (3) ta được :
\(P\le\frac{1}{4}\left(\frac{a}{a+1}+\frac{1}{a+1}+\frac{b}{b+1}+\frac{1}{b+1}+\frac{c}{c+1}+\frac{1}{c+1}\right)=\frac{3}{4}.\)( đpcm )
dấu " = " xẩy ra khi a = b = c = 1