Cho f(x)=\(\frac{x+2}{x-1}\)
Tìm x để f(x) >1
Cho biểu thức f(x) = \(\frac{x+2}{x-1}\)
a. Tìm giá trị của biến để cho vế phải có nghĩa.
b. Tính: f(7); f(1)?
c. Tìm x để f(x)= \(\frac{1}{4}\)
d. Tìm x thuộc Z để f(x) có giá trị nguyên?
e. Tìm x để f(x) >0
a. Để \(\frac{x+2}{x-1}\) có nghĩa thì \(x-1\ne0\Leftrightarrow x\ne1\)
b. Thay số vào rồi tính là ra nhé bạn.
c. \(f\left(x\right)=\frac{1}{4}\)
\(\frac{x+2}{x-1}=\frac{1}{4}\)
4(x + 2) = x - 1
4x + 8 = x - 1
4x - x = -1 - 8
3x = -9
x = -3
d. \(f\left(x\right)\in Z\)
\(\Rightarrow\frac{x+2}{x-1}\in Z\)
\(\Rightarrow\frac{x-1+3}{x-1}\in Z\)
\(\Rightarrow1+\frac{3}{x-1}\in Z\)
\(\Rightarrow\frac{3}{x-1}\in Z\)
Để \(\frac{3}{x-1}\in Z\) thì \(3⋮x-1\Leftrightarrow x-1\inƯ\left(3\right)=\left\{\text{±}1;\text{±}3\right\}\)
Ta có bảng sau:
x - 1 | -1 | -3 | 1 | 3 |
x | 0 | -2 | 2 | 4 |
Vậy để f(x) có giá trị nguyên thì \(x\in\left\{-2;0;2;4\right\}\)
e. f(x) > 0
\(\Leftrightarrow\frac{x+2}{x-1}>0\)
\(\Rightarrow1+\frac{3}{x-1}>0\)
\(\Rightarrow\frac{3}{x-1}>-1\)
\(\Rightarrow x-1>-3\)
\(\Rightarrow x>-2\)
Cho hàm số f(x)=\(\frac{x+2}{x-1}\)
a) Tìm giá trị biến để cho vế phải có nghĩa.
b)tính f(7)
c) Tìm x để f(x)=\(\frac{1}{4}\)
d) Tìm x thuộc Z để f(x) có giá trị nguyên
a) x khác 1
b) f(7)=\(\frac{3}{2}\)
c)\(\frac{x+2}{x-1}\)=\(\frac{1}{4}\)<=> 4(x+2)=x-1<=>x=-3
d) f(x)=\(\frac{x+2}{x-1}\)=\(\frac{x-1+3}{x-1}\)= 1+\(\frac{3}{x-1}\)
f(x) có giá trị nguyên <=> x-1 thuộc Ư(3) <=> x-1 thuộc {+1;+3}
x-1 | -1 | 1 | 3 | -3 |
x | 0 | 2 | 4 | -2 |
e) f(x)>1 <=> 1+\(\frac{3}{x-1}\)> 1 <=> \(\frac{3}{x-1}\)> 0 <=> x-1 >0 <=> x>1
BT1: Cho hàm số:
f(x)= \(\frac{x+2}{x-1}\)
a) Tìm x để vế phải có nghĩa
b) Tính f(7)
c) Tìm x để f(x)= \(\frac{1}{4}\)
d) Tìm x thuộc Z để f(x) có gt nguyên
e) Tìm x để f(x) >1
BT2 : Tìm x thuộc Z để biểu thức :
a) P= 9-2.|x-3| đạt GTLN
b) Q= |x-2| + |x-8| đạt GTNN
a) có nghĩa khi \(x-1\ne0\Rightarrow x\ne1\)
b)\(f\left(7\right)=\frac{7+2}{7-1}=\frac{9}{6}\)
c)\(f\left(x\right)=\frac{x+2}{x-1}=\frac{1}{4}\Leftrightarrow x+2=4x-4\)
\(\Leftrightarrow-3x=-6\Leftrightarrow x=2\)
e)\(f\left(x\right)>1\Rightarrow\frac{x+2}{x-1}-1>0\)
\(\Rightarrow\frac{3}{x-1}>0\) thấy 3>0 nên x-1>0 =>x>1
Bài 2:
a)\(P=9-2\left|x-3\right|\)
Thấy: \(\left|x-3\right|\ge0\)\(\Rightarrow2\left|x-3\right|\ge0\)
\(\Rightarrow-2\left|x-3\right|\le0\)
\(\Rightarrow9-2\left|x-3\right|\le9\)
Khi x=3
b)Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(Q=\left|x-2\right|+\left|x-8\right|\)
\(=\left|x-2\right|+\left|8-x\right|\)
\(\ge\left|x-2+8-x\right|=6\)
Khi \(2\le x\le8\)
cho f(x)= \(\frac{x+2}{x-1}\)
tìm x để f(x) > 1
Cho biểu thức F= \(\left(\frac{x^2+2}{x^3-1}+\frac{x+1}{x^2+x+1}-\frac{x+1}{x^2-1}\right)\)
a) Tìm điều kiện xác định của x để F có nghĩa và rút gọn
b) Tìm giá trị của F khi x=2
c) Đặt Q= \(\frac{1}{F}\)so sánh Q với 3 biết x>0
Cho hàm số F(x)= \(\frac{x+2}{x-1}\).
Tìm x để F(x) lớn hơn 1
Ta có:\(\frac{x+2}{x-1}=\frac{x-1+3}{x-1}=1+\frac{3}{x-1}\)
Để \(f\left(x\right)>1\) thì \(\frac{3}{x-1}>0\)
\(\Rightarrow x-1>0\Rightarrow x>1\)
F(x)= \(\frac{x+2}{x-1}\ge1\)
\(\Leftrightarrow\frac{x+2}{x-1}-1\ge0\)
\(\Leftrightarrow\frac{x+2-x+1}{x-1}\ge0\)
\(\Leftrightarrow\frac{3}{x-1}\ge0\)
\(\Leftrightarrow x-1>0\)
\(\Leftrightarrow x>1\)
Toàn ngôn ngữ toán ko à mình không hỉu lắm... Các bạn giúp vơi
bài 1:Cho M=(1+$\frac{a}{a^{2}+1}$) :($\frac{a}{a^{2}-1}$-$\frac{2a}{a^{3}-a^{2}+a-1}$ )
a)tìm điều kiện xác định
b)rút gọn M
bài 2:cho f(x)=2$x^{2}$+ax+1 và g(x)=x-3
tìm a để f(x):g(x) dư 4
cho hàm số f(x)=\(\frac{x+3}{x-2}\) . Tìm x để f(x) > 1
Ta cod \(\hept{\begin{cases}f\left(x\right)>1\\f\left(x\right)=\frac{x+3}{x-2}\end{cases}}\)
<=> \(\frac{x+3}{x-2}>1\)
<=> \(\frac{x+3}{x-2}-1>0\)
\(\Leftrightarrow\frac{x+3-x-2}{x-2}>0\)
\(\Leftrightarrow\frac{1}{x-2}>0\)
<=> x - 2 > 0
<=> x = 2
Vậy x = 2
@@ Học tốt
Takigawa Miraii
Trả lời:
Ta có:\(f\left(x\right)=\frac{x+3}{x-2}\) \(\left(Đk:x\ne2\right)\)
Để\(f\left(x\right)>1\)
\(\Leftrightarrow\frac{x+3}{x-2}>1\)
\(\Leftrightarrow\frac{x+3}{x-2}-1>0\)
\(\Leftrightarrow\frac{x+3-x+2}{x-2}>0\)
\(\Leftrightarrow\frac{5}{x-2}>0\)
\(\Leftrightarrow x-2>0\)
\(\Leftrightarrow x>2\)(Thỏa mãn Đk: \(x\ne2\))
Vậy\(x>2\)thì hàm số\(f\left(x\right)=\frac{x+3}{x-2}>1\)
Hok tốt!
Good girl
H ms bt sai
Làm lại
Ta có \(\hept{\begin{cases}f\left(x\right)=\frac{x+3}{x-2}\\f\left(x\right)>1\end{cases}}\) ( x khác 2 )
<=> \(\frac{x+3}{x-2}>1\)
<=> \(\frac{x+3}{x-2}-1>0\)
\(\Leftrightarrow\frac{x+3}{x-2}-\frac{x-1}{x-2}>0\)
\(\Leftrightarrow\frac{5}{x-2}>0\)
<=> x - 2 > 0 ( do 5 >0 )
<=> x > 2
Vậy x > 2
Cs bác nào thấy sai thì cứ nói hẳn ra nhá đừng tk sai như v !!!
CHO BIỂU THỨC :
\(F=\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}\)
a) Tìm điều kiện của x để F có nghĩa
b) Rút gọn F
c) Tìm x để F=3
d) Tính giá trị của F khi giá trị tuyệt đối của x-1 = 5
e) Tìm x để F thuộc Z