Cho a+b+c= Rút gọn biểu thức:
M=a^3+b^3+c^3-3abc/(a-b)^3+(b-c)^3+(c-a)^3
cho a+b+c = 3 rút gọn biểu thức (a^3+b^3+c^3-3abc)/((a-b)^3+(b-c)^3+(c-a)^3)
sao ma kho du day ban..minh bo tay bo chan lun oy oy oy
xin loi minh khong the giup ban duoc
cho a+b+c = 3 rút gọn biểu thức (a^3+b^3+c^3-3abc)/((a-b)^3+(b-c)^3+(c-a)^3)
Aii hộ với!?? ~_~
Cho a+b+c=B. Rút gọn B=a^3+b^3+c^3-3abc/(a-b)^3+(b-c)^3+(c-a)^3
M=a^3+b^3+c^3-3abc/(a-b)^3+(b-c)^3+(c-a)^3
Rút gọn biểu thức :
A=(a^3+b^3+c^3-3abc)/(a^2+b^2+c^2-ab-bc-ca)
- Phân tích ra nhân tử :
\(a^3+b^3+c^3-3abc=a^3+b^3+c^3+3a^2b-3ab^2+3ab^2-3ab^2-3abc\)\(=a^3+3a^2b+3ab^2+b^3+c^3-3ab\left(a+b+c\right)\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left[\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\right]\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)
Từ đây ta có \(A=\frac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)}{a^2+b^2+c^2-ab-bc-ac}\)
\(\Rightarrow A=a+b+c\)
Cho a+b+c= 3
Rút gọn: A=\(\frac{a^3+b^3+c^3-3abc}{\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3}\)
phân tích tử thức:
\(a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
Phân tích mẫu thức:\(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3=3\left(ab^2-a^2b+bc^2-b^2c+ca^2-c^2a\right)\)
\(=3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
\(\Rightarrow A=\frac{3\left(a^2+b^2+c^2-ab-bc-ca\right)}{3\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\frac{a^2+b^2+c^2-ab-bc-ca}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
a 3 + b 3 + c 3 = 3abc⇔a 3 + b 3 + c 3 − 3abc = 0
⇔ a + b 3 − 3ab a + b + c 3 − 3abc = 0
⇔ a + b 3 + c 3 − 3ab a + b + 3abc = 0
⇔ a + b + c a 2 + b 2 + c 2 + 2ab − ac − bc − 3ab a + b + c = 0
⇔ a + b + c a 2 + b 2 + c 2 − ab − bc − ac = 0
⇔ 2 a + b + c a − b 2 + b − c 2 + c − a /2 = 0
Vì a,b,c > 0 nên a+b+c > 0
Do đó : a − b 2 = 0
b − c 2 = 0
c − a 2 = 0
⇒a = b = c
k cho mk nha
\(A=\frac{a^3+b^3+c^3-3abc}{\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3}.\)
Áp dụng: (a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a) => a3+b3+c3=(a+b+c)3-3(a+b)(b+c)(c+a)=27-3(a+b)(b+c)(c+a)
=> \(A=\frac{27-3\left(a+b\right)\left(b+c\right)\left(c+a\right)-3abc}{a^3-3a^2b+3ab^2-b^3+b^3-3b^2c+3bc^2-c^3+c^3-3c^2a+3ca^2-a^3}.\)
\(A=\frac{27-3\left(a+b\right)\left(b+c\right)\left(c+a\right)-3abc}{-3a^2b+3ab^2-3b^2c+3bc^2-3c^2a+3ca^2}\)=> \(A=\frac{9-\left(a+b\right)\left(b+c\right)\left(c+a\right)-abc}{-a^2b+ab^2-b^2c+bc^2-c^2a+ca^2}\)
Ta có: (a+b)(b+c)(c+a)=(3-c)(3-b)(3-a)=27-9a-9b-9c+3ab+3ac+3bc-abc=27-9(a+b+c)+3(ab+bc+ca)-abc=3(ab+bc+ca)-abc
Và: -a2b+ab2-b2c+bc2-c2a+ca2=(a-b)(b-c)(c-a)
=> \(A=\frac{9-3\left(ab+bc+ca\right)+abc-abc}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)\(A=\frac{9-3\left(ab+bc+ca\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
cho a + b + c = 3. Rút gọn phân thức sau:
( a3 + b3 + c3 -3abc )/[ ( a - b )3 + ( b - c )3 + ( c - a )3 ]
Ta có:
\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)
Và \(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3=3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
Thay vào thì kết quả là \(\frac{a^2+b^2+c^2-ab-ac-cb}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
P/s: Bạn xem lại đề nhé.... tớ cũng từng làm bài này nhưng đề ở phần mẫu số là bình phương nên tớ không làm rõ chứ không lại mất công.
a+b+b= 3. Rút gọn bểu thức
A= a^3+b^3+c^3-3abc / ( a-b )^3 + ( b-c )^3 + ( c-a )^3
Rút gọn biểu thức
\(\frac{\text{a^3+b^3+c^3-3abc}}{\text{a^2+b^2+c^2-ab-bc-ca}}\)
a^3+b^3+c^3-3abc
<=>(a+b)^3 -3ab(a+b) +c^3 - 3abc
<=>[(a+b)^3 +c^3] -3ab.(a+b+c)
<=>(a+b+c). [(a+b)^2 -c.(a+b)+c^2] -3ab(a+b+c)
<=>(a+b+c).(a^2+2ab+b^2-ca-cb+c^2-3ab)...
<=>(a+b+c).(a^2+b^2+c^2-ab-bc-ca)
thay vào và rút gọn ta được:\(a+b+c\)
cho a + b + c = 3. Rút gọn phân thức sau:
a3 + b3 + c3 -3abc
( a - b )3 + ( b - c )3 + ( c - a )3
phân thức sao không có phần mẫu và tử vậy bạn?