Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ĐỖ Xuân tùng
Xem chi tiết
Bảo Bình Vô Đối Hơn Song...
Xem chi tiết
Phạm Đăng Khoa
Xem chi tiết
Trương Quang Khánh
17 tháng 8 2021 lúc 20:23

\(A=-\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)...\left(1-\dfrac{1}{2014^2}\right)\)

\(A=\dfrac{\left(1\cdot3\right)\left(2\cdot4\right)\left(3\cdot5\right)...\left(2012\cdot2014\right)\left(2013\cdot2015\right)}{\left(2\cdot2\right)\left(3\cdot3\right)\left(4\cdot4\right)...\left(2013\cdot2013\right)\left(2014\cdot2014\right)}\)

\(A=\dfrac{\left(1\cdot2\cdot3\cdot...\cdot2012\cdot2013\right)\left(3\cdot4\cdot5\cdot...\cdot2014\cdot2015\right)}{\left(2\cdot3\cdot4\cdot...\cdot2013\cdot2014\right)\left(2\cdot3\cdot4\cdot...\cdot2013\cdot2014\right)}\)

\(A=\dfrac{1\cdot2015}{2014\cdot2}=\dfrac{2015}{4028}\)

Vì \(\dfrac{2015}{4028}>-\dfrac{1}{2}\) nên A > B

nguyễn như linh
Xem chi tiết
Nguyễn Phương Uyên
1 tháng 7 2019 lúc 18:40

\(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{2014^2}-1\right)\)

\(-A=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{2014^2}\right)\)

\(-A=\frac{3}{2\cdot2}\cdot\frac{8}{3\cdot3}\cdot\frac{15}{4\cdot4}\cdot...\cdot\frac{4056195}{2014\cdot2014}\)

\(-A=\frac{\left(1\cdot3\right)\left(2\cdot4\right)\left(3\cdot5\right)...\left(2013\cdot2015\right)}{\left(2\cdot2\right)\left(3\cdot3\right)\left(4\cdot4\right)...\left(2014\cdot2014\right)}\)

\(-A=\frac{\left(1\cdot2\cdot3\cdot...\cdot2013\right)\left(3\cdot4\cdot5\cdot...\cdot2015\right)}{\left(2\cdot3\cdot4\cdot...\cdot2014\right)\left(2\cdot3\cdot4\cdot...\cdot2014\right)}\)

\(-A=\frac{1\cdot2015}{2014\cdot2}=\frac{2015}{4028}\)

\(A=\frac{-2015}{4028}\)

Quỳnh Hương Phù Thủy
Xem chi tiết
Phạm Đăng Khoa
Xem chi tiết
Lấp La Lấp Lánh
20 tháng 8 2021 lúc 10:26

2)Ta có: \(2^{332}< 2^{333}=\left(2^3\right)^{111}=8^{111}\)

              \(3^{223}>3^{222}=\left(3^2\right)^{111}=9^{111}\)

Vì \(8^{111}< 9^{111}\) mà \(2^{332}< 8^{111},3^{223}>9^{111}\) nên suy ra \(2^{332}< 3^{223}\)

Vậy \(2^{332}< 3^{223}\)

Lấp La Lấp Lánh
20 tháng 8 2021 lúc 10:34

1) \(A=\dfrac{10^{2013}+1}{10^{2014}+1}\Rightarrow10A=\dfrac{10^{2014}+10}{10^{2014}+1}=\dfrac{10^{2014}+1}{10^{2014}+1}+\dfrac{9}{10^{2014}+1}=1+\dfrac{9}{10^{2014}+1}\)

\(B=\dfrac{10^{2014}+1}{10^{2015}+1}\Rightarrow10B=\dfrac{10^{2015}+10}{10^{2015}+1}=\dfrac{10^{2015}+1}{10^{2015}+1}+\dfrac{9}{10^{2015}+1}=1+\dfrac{9}{10^{2015}+1}\)Vì: \(10^{2014}+1< 10^{2015}+1\Rightarrow\dfrac{9}{10^{2014}+1}>\dfrac{9}{10^{2015}+1}\Rightarrow1+\dfrac{9}{10^{2014}+1}>1+\dfrac{9}{10^{2015}+1}\)

Nên suy ra \(10A>10B\Rightarrow A>B\)

Nguyễn Văn Anh
Xem chi tiết
Hội Những Đứa Con Ghét C...
21 tháng 4 2016 lúc 23:13

Ngu ngờ ngáo !

donhathuy
Xem chi tiết
Trí Tiên亗
10 tháng 8 2020 lúc 22:05

\(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)....\left(\frac{1}{2013^2}-1\right)\left(\frac{1}{2014^2}-1\right)\)

\(\Leftrightarrow A=\left(\frac{1}{4}-1\right)\left(\frac{1}{9}-1\right)\left(\frac{1}{16}-1\right)....\left(\frac{1}{4052169}-1\right)\left(\frac{1}{\text{​​}\text{​​}4056196}-1\right)\)

\(\Leftrightarrow A=\frac{-3}{4}.\frac{-8}{9}.\frac{-15}{16}.....\frac{-4056195}{\text{​​​​}4056196}\)

\(\Leftrightarrow A=\frac{\left(-1\right)3}{2^2}.\frac{\left(-2\right)4}{3^3}.\frac{\left(-3\right)5}{4^2}.....\frac{\left(-2013\right)2015}{\text{​​​​}2014^2}\)

\(\Leftrightarrow A=\frac{\left(-1\right)\left(-2\right)....\left(-2013\right)}{2.3...1014}.\frac{3.4......2015}{2.3......2014}\)

\(\Leftrightarrow A=\frac{-1}{1014}.\frac{2015}{2}=\frac{-2015}{4028}\)

VÌ \(\frac{-2015}{4028}< \frac{-1}{2}\)

\(\Rightarrow A< \frac{-1}{2}\Leftrightarrow A< B\)

Khách vãng lai đã xóa
Xyz OLM
10 tháng 8 2020 lúc 22:21

Ta có \(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)...\left(\frac{1}{2014^2}-1\right)=\frac{-3}{2^2}.\frac{-8}{3^2}...\frac{-4056195}{2014^2}\)

\(=-\left(\frac{1.3}{2^2}.\frac{2.4}{3^2}...\frac{2013.2015}{2014^2}\right)=-\left(\frac{1.3.2.4...2013.2015}{2.2.3.3...2014.2014}\right)\)

\(=-\left(\frac{\left(1.2.3...2013\right)\left(3.4.5...2015\right)}{\left(2.3.4...2014\right)\left(2.3.4...2014\right)}\right)=-\frac{2015}{2014.2}=-\frac{2015}{4028}< \frac{-2014}{4028}< \frac{1}{2}=B\)

=> A < B

Khách vãng lai đã xóa
Ngoc Han ♪
11 tháng 8 2020 lúc 21:49

\(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)...\left(\frac{1}{2014^2}-1\right)=\frac{-3}{3^2}\cdot\frac{-8}{3^2}...\frac{-4056195}{2014^2}\)

\(A=-\left(\frac{1.3}{2^2}\cdot\frac{2.4}{3^2}...\frac{2013.2015}{2014^2}\right)=-\left(\frac{1.3.2.4....2013.2015}{2.2.3.3...2014.2014}\right)\)

\(A=-\left(\frac{\left(1.2.3...2014\right)\left(3.4.5...2015\right)}{\left(2.3.4....2014\right)\left(2.3.4....2014\right)}\right)=-\frac{2015}{2014.2}=-\frac{2015}{4028}< -\frac{2014}{4028}< \frac{1}{2}=B\)

\(\Rightarrow A< B\)

Khách vãng lai đã xóa
Độc Cô Dạ
Xem chi tiết
Đức Phạm
20 tháng 8 2017 lúc 16:06

\(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)\cdot\cdot\cdot\cdot\left(\frac{1}{2013^2}-1\right)\left(\frac{1}{2014^2}-1\right)\)

\(A=\left(\frac{-3}{4}\right)\left(\frac{-8}{9}\right)\left(\frac{-15}{16}\right)\cdot\cdot\cdot\left(\frac{-4052168}{4052169}\right)\left(\frac{-4056195}{4056196}\right)\)

\(A=\frac{-1\cdot3}{2\cdot2}\cdot\frac{-2\cdot4}{3\cdot3}\cdot\frac{-3\cdot5}{4\cdot4}\cdot....\cdot\frac{-2012\cdot2014}{2013\cdot2013}\cdot\frac{-2013\cdot2015}{2014\cdot2014}\)

\(A=\frac{-1\cdot\left(-2\right)\cdot\left(-3\right)\cdot....\cdot\left(-2012\right)\cdot\left(-2013\right)}{2\cdot3\cdot4\cdot....\cdot2013\cdot2014}\cdot\frac{3\cdot4\cdot5\cdot....\cdot2014\cdot2015}{2\cdot3\cdot4\cdot....\cdot2013\cdot2014}\)

\(A=\frac{-1}{2014}\cdot\frac{2015}{2}=\frac{-2015}{4028}\)

Ta thấy \(\frac{-2015}{4028}< \frac{-1}{2}\) \(\Rightarrow A< B\)