Tính A = 1.2 + 2.3 + 3.4 + … + n.(n + 1)
Giúp mình với, mai phải nộp cho cô rồi, giúp mình với nha!
Tính A = 1.2 + 2.3 + 3.4 + … + n.(n + 1)
giải giùm cái mình cần gấp ngày mai nộp cô rồi
3A = 1.2.( 3 -0) + 2.3.(4-1) + 3.4.(5-2) +....+ n(n+1) [ (n+2) - ( n-1)]
= 1.2.3 - 0 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ....+ n(n+1)(n+2) - (n-1)n(n+1)
= n(n+1)(n+2)
A =n(n+1)(n+2) : 3
Cách giải 1:
Ta thấy rằng mỗi số hạng trong dãu số trên đều là tích của hai số tự nhiên liên tiếp, khi đó:
Gọi a1 = 1.2 → 3a1 = 1.2.3 → 3a1 = 1.2.3 - 0.1.2
Tương tự:
a2 = 2.3 → 3a2 = 2.3.3 → 3a2 = 2.3.4 - 1.2.3
a3 = 3.4 → 3a3 = 3.3.4 → 3a3 = 3.4.5 - 2.3.4
...
a(n - 1) = (n - 1).n → 3a(n - 1) = 3(n - 1)n → 3a(n - 1) = (n - 1).n.(n + 1) - (n - 2).(n - 1).n
an = n.(n - 1) → 3an = 3n(n + 1) → 3an = n(n + 1)(n + 2) - (n - 1)n(n + 1)
Cộng vế với vế của các đẳng thức trên ta được:
3(a1 + a2 + a3 +...+ an) = n(n + 1)(n + 2)
Cách giải 2:
Ta có:
3A = 1.2.3 + 2.3.3 + ... + n(n + 1).3
3A = 1.2.(3 - 0) + 2.3.(3 - 1) + ... + n(n + 1)[(n - 2) - (n - 1)]
3A = 1.2.3 - 1.2.0 + 2.3.3 - 1.2.3 + ...+ n(n + 1)(n + 2) - (n -1)n(n + 1)
3A = n(n + 1)(n + 2)
Từ cách giải trên, rút ra công thức tổng quát cho dạng bài tính tổng của dãy số mà các số hạng không cách đều:
k(k + 1)( k + 2) - (k -1)k(k + 1) = 3k(k + 1). Trong đó k = 1; 2; 3;...
A=1.2+2.3+3.4+.....+1999.2000
Mai mình phải nộp bài rồi giúp mình cái
1.2 = 1/3. 1.2.3 - 0.1.2
2.3 = 1/3. 2.3.4 - 1.2.3
................................
1999.2000 = 1/3. 1999.2000.2001 - 1998.1999.2000 = 3998000
Quậy A = 3998000
Hãy k đúng cho mik nha!!!!!!!!!!
1.2+2.3+3.4+.........+1999.2000
=>3A=1.2.3+2.3.3+3.4.3+....+1999.2000.3
=>3A=1.2.3+2.3.(4-1)+3.4.(5-2)+.....+1999.2000.(2001-1998)
=>3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+....+1999.2000.2001-1998.1999.2000
=>3A=1999.2000.2001
=>A=7999998000:3
=>A=2666666000
Tính ;
A=2/2.3+2/3.4+2/4.5+...+2/99.100
Các bạn giúp mình với mai mình phải nộp rồi
Ai trả lời nhanh nhất mình sẽ tick cho 2 cái
\(A=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(A=2.\left(\frac{1}{2}-\frac{1}{100}\right)=2.\frac{49}{100}=\frac{49}{50}\)
Cảm ơn bạn nhiều nha Nguyễn Tuấn Minh
Tính A = 1.2 + 2.3 + 3.4 + … + n.(n + 1)
Giúp mình với !
Tính A = 1.2 + 2.3 + 3.4 + … + n.(n + 1)
các bạn giúp với mình cần gấp
cách mình đúng;
3S = 1.2.3 + 2.3.3 + 3.4.3 + ... + n(n +1)3
= 1.2.(3 - 0) + 2.3.(4 - 1) + 3.4.(5 - 2) + ...+ n(n + 1)((n + 2) - (n -1))
= 1.2.3 + 2.3.4 - 2.3 + 3.4.5 - 2.3.4 + ... + n(n + 1)(n + 2) - n(n + 1)(n - 1)
= n(n + 1)(n + 2)
=> S = n(n + 1)(n + 2)/3
Tính giá trị của biểu thức A,biết:
a, A=1+2+3+....+(n-1)+n
b, A=1.2+2.3+3.4+....+99.100
MAI MÌNH ĐI HỌC RỒI GIẢI RÕ HỘ MÌNH VỚI
3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + 99.100.3
3A = 1.2.( 3 + 0 ) + 2.3.( 4 - 1 ) + .. + 99.100.( 101 - 98 )
3A = 1.2.3 + 2.3.4 - 1.2.3 + ... + 99.100.101 - 98.99.100
3A = 99.100.101
A = ( 99.100.101 ) : 3 = 333300
Vậy A = 333300
mk làm câu b
A=1.2+2.3+3.4+.......+99.100
3.A =3.1.2+2.3.3+3.4.3+............+99.100.3
3.A= 1.2.3+2.3.(4-1)+3.4.(5-2) +..........+99.100.(101-98)
3.A=1.2.3+2.3.4-1.2.3 +3.4.5-2.3.4+............+99.100.101-98.99.100
vì cứ +2.3.4 lại -2.3.4 cứ như thế
3.A=99.100.101
A=(99.100.101):3
A=333300
chúc bạn may mắn trong học tập
mk vừa học xong
Giúp mình với ! Mai mình phải nộp cho cô rồi
Câu 4:
Vì tia Oz nằm giữa 2 tia Ox, Oy (giả thiết)
=> \(\widehat{xOz}+\widehat{zOy}=\widehat{xOy}\\ \Leftrightarrow\widehat{xOz}+35^o=145^o\\ \rightarrow\widehat{xOz}=145^o-35^o=110^o\)
Vì tia Ot là tia phân giác góc \(\widehat{xOz}\) nên ta có:
\(\widehat{xOt}=\widehat{tOz}=\dfrac{\widehat{xOz}}{2}=\dfrac{110^o}{2}=55^o\)
Câu 3:
Lượng giấy của lớp 6D chiếm:
1 - (1/4 + 0,2 + 30%)= 1/4 (tổng số giấy 4 lớp)
Lớp 6D thu được: 1/4 x 0,6=0,15(tấn giấy)
Tìm n thuộc Z biết:
n+(n+1.2)+(n+2.3)+(n+3.4)+....+(x+99.100)=0
trình bày cách làm ra giúp mình nha
à mà tiện cho mình hỏi,có ai fan conan ko kb với mình nha!
Tìm x biết :
1/1.2+1/2.3/1/3.4+..+1/x.(x+10)=2015/2016
Các bạn ơi giúp mik nha mai mik phải nộp bài rồi.
Bạn nào nhanh và đúng nhất mik sẽ tick nhé!!!
Đề sai nhé phải là x(x+1)
Ta có\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{x\left(x+1\right)}=\frac{2015}{2016}\Leftrightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2015}{2016}\)
\(\Leftrightarrow1-\frac{1}{x+1}=\frac{2015}{2016}\Leftrightarrow\frac{x}{x+1}=\frac{2015}{2016}\Rightarrow x=2015\)
Vậy \(x=2015\)