chứng minh 6x - x^2 - 10 luôn âm với mọi x
Làm giúp mình với ạ .
Đề bài sai nhé bạn
Ví dụ x = 1 thì bthức = -1 - 6 + 10 = 3 không âm
\(-x^2-6x+10\)
\(=-1\left(x^2+6x-10\right)\)
=> -x^2-6x+10 < 0 với mọi x
Chứng minh biểu thức sau luôn âm với mọi giá trị của x
A= -x^2 + 6x-10
A = -x2 + 6x - 10
= -(x2 - 6x + 10)
= -(x2 - 2.x.3 + 9 + 1)
= -(x2 - 2.x.3 + 32 +1)
= -[(x - 3)2 + 1]
Mà (x - 3)2 + 1 \(\ge\)1
=> -[(x - 3)2 + 1] \(\le\)-1 \(< \)0
Vậy giá trị của A luôn âm với mọi giá trị của x.
Chứng minh biểu thức sau có giá trị luôn âm với mọi x
B= -10-x^2-6x
\(B=-10-x^2-6x\)
\(\Rightarrow B=-\left(x^2+6x+10\right)\)
\(\Rightarrow B=-\left(x^2+6x+9+1\right)\)
\(\Rightarrow B=-\left[\left(x+3\right)^2+1\right]\)
Vì \(\left(x+3\right)^2\ge0\forall x\)\(\Rightarrow\left(x+3\right)^2+1\ge1\)
\(\Rightarrow-\left[\left(x+3\right)^2+1\right]\le-1\)
=> Đpcm
B=\(-10-x^2-6x\)
B=\(-x^2-6x-9-1\)
B=\(-\left(x^2+6x+9\right)-1\)
=\(-\left(x+3\right)^2-1\)
Ta có : \(\left(x+3\right)^2\ge0\forall x\)
\(-\left(x+3\right)^2\le0\)
\(-\left(x+3\right)^2-1\le-1\)
Vậy B luôn âm với mọi x
Ta có B = -x2 - 6x - 10
= -x2 - 6x - 9 - 1
= -(x + 3)2 - 1 \(\le\) - 1 < 0
=> B < 0 với mọi x
chứng tỏ rằng
a) x^2-6x+10 luôn luôn dương với mọi x
b) 4x-x^2-5 luôn luôn âm với mọi x
a) x2-6x+10
=x2-6x+9+1
=(x-3)2+1 \(\ge\) 0 (vì (x-3)2\(\ge\)0)
vậy x^2-6x+10 luôn luôn dương với mọi x
4x-x2-5
=-x2+4x-4-1
=-(x2-4x+4)-1
=-(x-2)2-1\(\le\)-1 ( vì -(x-2)2\(\le\)0 )
vậy 4x-x^2-5 luôn luôn âm với mọi x
a)x^2+2x+3
=x^2+2.x.1+1^2+2
=(x+1)^2+2
Vì (x+1)^2≥0
Suy ra:(x+1)^2+2≥(đpcm)
b)-x^2+4x-5
=-(x^2-4x+5)
=-(x^2-2.2x+4)-1
=-(x-2)^2-1
Vì -(x-2)^2≤0
Suy ra -(x-2)^2-1≤-1(đpcm)
chứng minh x^2+4y^2-2x-4xy+4y+2018 luôn âm với mọi x
giúp với mình cần gấp
\(x^2+4y^2-2x-4xy+4y+2018=\left[x^2-2x\left(1+2y\right)+\left(1+2y\right)^2\right]+2017=\left(x-1-2y\right)^2+2017\ge2017>0\)
chứng minh
a) x2 + 2x +3 luôn dương với mọi x
b) x2 - 3x +5 luôn dương với mọi x
c) - x2 + 4x - 5 luôn âm với mọi x
d) -3x - 6x -7 luôn âm với mọi x
Chứng minh rằng :
A=x2+10y2+2xy-6y+5 luôn dương với mọi x,y
B=x-x2-1 luôn âm với mọi x
Mọi ng giúp mình với
\(A=x^2+10y^2+2xy-6y+5\)
\(A=x^2+2xy+y^2+9y^2-6y+1+4\)
\(A=\left(x+y\right)^2+\left(3y+1\right)^2+4\)
Mà \(\hept{\begin{cases}\left(x+y\right)^2\ge0\\\left(3y+1\right)^2\ge0\\4>0\end{cases}}\)
=> A luôn dương với mọi x ; y
\(B=x-x^2-1\)
\(B=-\left(x^2-x+1\right)\)
\(B=-\left(x^2-x+\frac{1}{4}+\frac{3}{4}\right)\)
\(B=-\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right]\)
\(B=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\)
Mà \(\hept{\begin{cases}-\left(x-\frac{1}{2}\right)^2\le0\\-\frac{3}{4}< 0\end{cases}}\)
=> B luôn âm với mọi x
chứng minh biểu thức luôn âm với mọi x,y:
F= -9+6x-y^2+4y-21
Chứng minh rằng biểu thức sau luôn âm với mọi x
a) (x-3).(1-x)-2
b) (x+4).(2-x)-10
Làm giúp mình nha mik cho 1 like!
a) Ta có: \(\left(x-3\right)\left(1-x\right)-2\)
\(=-x^2+4x-3-2\)
\(=-\left(x^2-4x+4\right)-1\)
\(=-\left(x-2\right)^2-1\le-1< 0\left(\forall x\right)\)
=> đpcm
b) Ta có: \(\left(x+4\right)\left(2-x\right)-10\)
\(=-x^2-2x+8-10\)
\(=-\left(x^2+2x+1\right)-1\)
\(=-\left(x+1\right)^2-1\le-1< 0\left(\forall x\right)\)
=> đpcm
b) \(\left(x+4\right)\left(2-x\right)-10=-x^2-4x+2x+8-10\)
\(=-x^2-2x-2=-x^2-2x-1-1\)
\(=-\left(x^2+2x+1\right)-1=-\left(x+1\right)^2-1\)
Vì \(\left(x+2\right)^2\ge0\forall x\)\(\Rightarrow-\left(x+2\right)^2\le0\forall x\)
\(\Rightarrow-\left(x+2\right)^2-1\le-1\forall x\)
\(\Rightarrow\left(x+4\right)\left(2-x\right)-10\le-1\forall x\)
hay \(\left(x+4\right)\left(2-x\right)-10\)luôn âm với mọi x ( đpcm )
a) (x-3).(1-x)-2
= x - x2-3+3x-2
=4x-x2-5
= - ( x2-4x+5)
= -(x2-2.2x+4)-1
= - (x-2)2-1
Có : - ( x-2)2 \(\le\)0 với mọi x
=> -(x-2)2-1\(\le\)-1 < 0 với mọi x
Vậy ...
b) (x+4).(2-x)-10
2x-x2+8-4x-10
= -2x -x2 - 2
= -(x2+2x+2)
=-(x2+2x+1)-1
=-(x+1)2-1
rồi đến đây lập luận như câu a nhé . Tớ lười lắm T_T thông cảm
Chứng minh rằng:
a) Biểu thức A=x^2+x+1 luôn luôn dương với mọi x
b) Biểu thức B= x^2-xy+y^2 luôn luôn dương với mọi x,y không đồng thời bằng 0
c) Biểu thức C= 4x-10-x^2 luôn luôn âm với mọi x
a) \(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)
c) \(C=4x-10-x^2=-\left(x^2-4x+10\right)\)
\(=-\left(x^2-4x+4+6\right)=-\left[\left(x-2\right)^2+6\right]\)
\(=-\left(x^2-4x+4+6\right)=-\left[\left(x-2\right)^2\right]-6\le-6< 0\forall x\)