bài 1: tìm giá trị lớn nhất hoặc nhỏ nhất của:
A =3,7+trị tuyệt đối của 4,3-x
tìm giá trị lớn nhất hoặc nhỏ nhất
a, P=3,7 +giá trị tuyệt đối 4,3-x
b, Q=5,5 -giá trị tuyệt đối 2x-1,5
a,/4,3-x/ >/ 0 với mọi x
=>3,7+/4,3-x/ >/ 3,7 với mọi x
=>GTNN của P là 3,7
dấu "=" xảy ra<=>4,3-x=0<=>x=4,3
Vậy....
b,/2x-1/5/ >/ 0 với mọi x
=>5,5-/2x-1/5/ </ 5,5 với mọi x
=> GTLN của Q là 5,5
Dấu "=" xảy ra<=>2x-1/5=0<=>2x=1/5<=>x=1/10
Vậy...
1) Tìm giá trị nhỏ nhất của:
A= 2 . ( x - 3 )4 - 11
2) Tìm giá trị lớn nhất của :
B= -3 - |5-x|
(|: giá trị tuyệt đối)
1) `(x-3)^4 >=0`
`2.(x-3)^4>=0`
`2.(x-3)^4-11 >=-11`
`=> A_(min)=-11 <=> x-3=0<=>x=3`
2) `|5-x|>=0`
`-|5-x|<=0`
`-3-|5-x|<=-3`
`=> B_(max)=-3 <=>x=5`.
Bài 1:
Ta có: \(\left(x-3\right)^4\ge0\forall x\)
\(\Leftrightarrow2\left(x-3\right)^4\ge0\forall x\)
\(\Leftrightarrow2\left(x-3\right)^4-11\ge-11\forall x\)
Dấu '=' xảy ra khi x=3
Bài 2:
Ta có: \(\left|5-x\right|\ge0\forall x\)
\(\Leftrightarrow-\left|5-x\right|\le0\forall x\)
\(\Leftrightarrow-\left|5-x\right|-3\le-3\forall x\)
Dấu '=' xảy ra khi x=5
Tìm giá trị nhỏ nhất hoặc lớn nhất của
A=3,7|4,3-x| ;,B=(2x+1/3)^4-1 ; C=0,5-|x-4| ;D=-(4/9x-2/15)^6+3
GTNN A= 0
GTNN B= -1
GTLN C = 0,5
GTLN D = 3
Để : \(A=3,7\left|4,3-x\right|min\)
Thì :\(\left|4,3-x\right|\)Phải min
Ta có :\(\left|4,3-x\right|\ge0\)
\(\Rightarrow\left|4,3-x\right|min=0\)
\(\Rightarrow4,3-x=0\Rightarrow x=4,3\)
\(\Rightarrow Amin=3,7X4.3=15.91\)
A=2017-(x+1). Tìm giá trị lớn nhất của A
B=giá trị tuyệt đối của x+2017cộng với 2018
Tìm giá trị nhỏ nhất của B
C=giá trị tuyệt đối của x+2017 cộng với giá trị tuyệt đối của y+2018 cộng với 2019
Tìm giá trị lớn nhất của C
tìm giá trị lớn nhất và nhỏ nhất của biểu thức a) P=3,7+/4,3-x/
b) 5,5 - /2x-1,5/
tìm giá trị lớn nhất và nhỏ nhất của biểu thức a) P=3,7+/4,3-x/
b)Q= 5,5 - /2x-1,5/
Tìm giá trị nhỏ nhất của biểu thức: C = 3 , 7 + 4 , 3 − x
Bài 1: Tìm giá trị nhỏ nhất của:
a) A= x2 + 2x + 4
b) B= x2 - 20x + 101
c) C= x2 - 2x + y2 + 4y + 8
Bài 2: Tìm giá trị lớn nhất của:
A = 5 - 8x - x2
B = x - x2
C = 4x - x2 + 3
D = -x2 + 6x - 11
Bài 1:
a: \(A=x^2+2x+4\)
\(=x^2+2x+1+3\)
\(=\left(x+1\right)^2+3>=3\forall x\)
Dấu '=' xảy ra khi x+1=0
=>x=-1
Vậy: \(A_{min}=3\) khi x=-1
b: \(B=x^2-20x+101\)
\(=x^2-20x+100+1\)
\(=\left(x-10\right)^2+1>=1\forall x\)
Dấu '=' xảy ra khi x-10=0
=>x=10
Vậy: \(B_{min}=1\) khi x=10
c: \(C=x^2-2x+y^2+4y+8\)
\(=x^2-2x+1+y^2+4y+4+3\)
\(=\left(x-1\right)^2+\left(y+2\right)^2+3>=3\forall x\)
Dấu '=' xảy ra khi x-1=0 và y+2=0
=>x=1 và y=-2
Vậy: \(C_{min}=3\) khi (x,y)=(1;-2)
Bài 2:
a: \(A=5-8x-x^2\)
\(=-\left(x^2+8x\right)+5\)
\(=-\left(x^2+8x+16-16\right)+5\)
\(=-\left(x+4\right)^2+16+5=-\left(x+4\right)^2+21< =21\forall x\)
Dấu '=' xảy ra khi x+4=0
=>x=-4
b: \(B=x-x^2\)
\(=-\left(x^2-x\right)\)
\(=-\left(x^2-x+\dfrac{1}{4}-\dfrac{1}{4}\right)\)
\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}< =\dfrac{1}{4}\forall x\)
Dấu '=' xảy ra khi \(x-\dfrac{1}{2}=0\)
=>\(x=\dfrac{1}{2}\)
c: \(C=4x-x^2+3\)
\(=-x^2+4x-4+7\)
\(=-\left(x^2-4x+4\right)+7\)
\(=-\left(x-2\right)^2+7< =7\forall x\)
Dấu '=' xảy ra khi x-2=0
=>x=2
d: \(D=-x^2+6x-11\)
\(=-\left(x^2-6x+11\right)\)
\(=-\left(x^2-6x+9+2\right)\)
\(=-\left(x-3\right)^2-2< =-2\forall x\)
Dấu '=' xảy ra khi x-3=0
=>x=3
a) Tìm giá trị nhỏ nhất của biểu thức 4+ giá trị tuyệt đói của x-2/5
b) Tìm giá trị lớn nhất của biểu thức 2- giá trị tuyệt đối của 1/5-x