cho abc=1 rút gọn :A= (a/ab+a+1)+(b/bc+b+1)+(ac+c+1)
cho abc=1. rút gọn
N=a/ab+a+1 +b/bc+b+1 +c/ac+c+1
a/(ab+a+1) + ab/(abc+ab+a)+abc/(ab.ac+ab.c+ab.1)
=a/(ab+a+1)+ab/(1+a+ab)+1/(a+1+ab)=tự tính đi vì chung mẫu rồi
cho (a+b+c)^2 = a^2 + b^2 +c^2 và abc khác 0
cmr bc/a^2 + ac/b^2 +ab/c^2 = 3
cho abc=1. rút gọn
a/ab+a+1 + b/bc+b+1 + c/ca+c+1
Cho abc=1 rút gọn biểu thức N=
\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\)
\(\frac{a}{ac+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)
\(=\frac{a}{ac+a+abc}+\frac{b}{bc+b+1}+\frac{bc}{abc+bc+b}\)
\(=\frac{1}{bc+b+1}+\frac{b}{bc+b+1}+\frac{bc}{bc+b+1}\)
\(=\frac{bc+b+1}{bc+b+1}\)
\(=1\)
Ta có:
\(N=\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\)
\(=\frac{a}{ab+a+1}+\frac{ab}{abc+ab+a}+\frac{c}{ac+c+abc}\)
\(=\frac{a}{ab+a+1}+\frac{ab}{1+ab+a}+\frac{c}{c\left(a+1+ab\right)}\)
\(=\frac{a}{ab+a+1}+\frac{ab}{1+ab+a}+\frac{1}{a+1+ab}\)
\(=\frac{a+ab+1}{ab+a+1}=1\)
Vậy N = 1
Bài 1: Cho a+b+c=0; rút gọn biểu thức A= a^2/(a^2-b^2-c^2) + b^2/(b^2-c^2-a^2) + c^2/(c^2-b^2-a^2)
Bài 2: Cho abc=2; rút gọn A= a/(ab+a+2) + b/(bc+b+1) + 2c/(ac+2c+2)
cho abc=3, rút gọn A=a/ab+a+3 + b/bc+b+1 + 3c/ac+3c+3
\(A=\frac{a}{ab+a+3}+\frac{b}{bc+b+1}+\frac{3c}{ac+3c+3}\)
\(=\frac{a}{ab+a+abc}+\frac{b}{bc+b+1}+\frac{3bc}{b\left(ac+3c+3\right)}\)
\(=\frac{a}{a\left(b+1+bc\right)}+\frac{b}{bc+b+1}+\frac{3bc}{abc+3bc+3b}\)
\(=\frac{1}{bc+b+1}+\frac{b}{bc+b+1}+\frac{3bc}{3+3bc+3b}\)
\(=\frac{1}{bc+b+1}+\frac{b}{bc+b+1}+\frac{bc}{bc+b+1}\)
\(=\frac{bc+b+1}{bc+b+1}=1\)
cho abc=1
rút gọn a/ab+a+1+b/bc+b+1+c/ca+c+1
\(\frac{a}{ab}+a+1+\frac{b}{bc}+b+1+\frac{c}{ca}+c+1\)
\(=\frac{1}{b}+a+1+\frac{1}{c}+b+1+\frac{1}{c}+c+1\)
\(=3+a+b+c+\frac{1}{a}+\frac{1}{c}+\frac{1}{b}\)
\(=3+\frac{a^2+1}{a}+\frac{b^2+1}{b}+\frac{c^2+1}{c}\)
\(...............................................................\)
cho abc=2. rút gọn biểu thức:
a/(ab+a+2)+b/(bc+b+1)+2c/(ac+2c+2)
\(\frac{a}{ab+a+2}\)+ \(\frac{b}{bc+b+1}\)+ \(\frac{2c}{ac+2c+2}\)
= \(\frac{a}{ab+a+2}\)+ \(\frac{ab}{a\left(bc+b+1\right)}\)+ \(\frac{2abc}{ab\left(ac+2c+2\right)}\)
= \(\frac{a}{ab+a+2}\)+ \(\frac{ab}{abc+ab+a}\)+ \(\frac{2abc}{a^2bc+2abc+2ab}\)
= \(\frac{a}{ab+a+2}\)+ \(\frac{ab}{ab+a+2}\)+ \(\frac{2}{ab+a+2}\) (vì abc = 2 )
= \(\frac{ab+a+2}{ab+a+2}\)= 1
Cho abc=2. Rút gọn biểu thức: \(M=\dfrac{a}{ab+a+2}+\dfrac{b}{bc+b+1}+\dfrac{2c}{ac+2c+2}\)
M\(=\dfrac{a}{ab+a+2}+\dfrac{b}{bc+b+1}+\dfrac{2c}{ac+2c+2}\)
\(M=\dfrac{a}{ab+a+abc}+\dfrac{b}{bc+b+1}+\dfrac{2bc}{b\left(ac+2c+2\right)}\)
M = \(\dfrac{a}{a\left(b+1+bc\right)}+\dfrac{b}{b+1+bc}+\dfrac{2bc}{abc+2bc+2b}\)
M=\(\dfrac{1}{b+1+bc}+\dfrac{b}{b+1+bc}+\dfrac{2bc}{2+2bc+2b}\)
M = \(\dfrac{1+b}{b+1+bc}+\dfrac{2bc}{2\left(1+bc+b\right)}\)
M = \(\dfrac{1+b}{b+1+bc}+\dfrac{bc}{b+1+bc}=\dfrac{1+b+bc}{b+1+bc}=1\)
Cho a, b, c, d thỏa mãn a + b + c + d = 0; ab + ac + bc = 1. Rút gọn biểu thức P = 3(ab − cd)(bc − ad)(ca − bd) (a 2 + 1)(b 2 + 1)(c 2 + 1) ?
A. -1
B. 1
C. 3
D. -3