cho một số tự nhiên không chia hết cho 3.chứng tỏ rằng b2-1 chia hết cho 3
a)tổng của 3 số tự nhiên liên tiếp có chia hết cho 3 không
b)tổng của 4 số tự nhiên liên tiếp có chia hết cho 4 không
c)chứng tỏ rằng trong 3 số tự nhiên liên tiếp có 1 số chia hết cho 3
d)chứng tỏ rằng trong 4 số tự nhiên liên tiếp có 1 số chia hết cho 4
a)
gọi 3 STN liên tiếp là a ;a+1;a+2
=>a+a+1+a+2=a+a+a+1+2=3a+3=3(a+1) chia hết cho 3
=> .. có
b)
gọi 4 STN liên tiếp là a;a+1;a+2;a+3
=>a+a+1+a+2+a+3=a+a+a+a+6=4a+6
=> ko chia hết cho 4
1. Chứng tỏ rằng: ab + ba chia hết cho 11
Chứng tỏ rằng: ab - ba chia hết cho 9
2. Chứng tỏ rằng: Tổng của 3 số tự nhiên liên tiếp là một số chia hết cho 3
3. Chứng tỏ rằng: Tổng của 3 số tự nhiên liên tiếp là một số không chia hết cho 4
1. Chứng tỏ rằng: ab + ba chia hết cho 11:
Ta có: ab+ba=10a+b+10b+a=11a+11b=11(a+b)
Vì \(11\left(a+b\right)⋮11\)
\(\Rightarrow ab+ba⋮11\)
Chứng tỏ rằng: ab - ba chia hết cho 9
Ta có: ab-ba=10a+b-10b-a=9a-9b=9(a-b)
vì \(9\left(a-b\right)⋮9\)
\(\Rightarrow ab-ba⋮9\)
1. a) Ta có : ab + ba = (a0 + b) + (b0 + a)
= (10a + b) + (10b + a)
= 10a + b + 10b + a
= (10a + a) + (b + 10b)
= 11a + 11b
= 11(a + b) \(⋮\)11
=> ab + ba \(⋮\)11 (ĐPCM)
b) Ta có : ab - ba = (a0 + b) - (b0 + a)
= (10a + b) - (10b + a)
= 10a + b - 10b - a
= (10a - a) - (10b - b)
= 9a - 9b
= 9(a - b) \(⋮\)9
=> ab + ba \(⋮\)9 (ĐPCM)
2) Gọi 3 số tự nhiên liên tiếp là a ; a + 1 ; a + 2
Khi đó a + a + 1 + a + 2
= 3a + 3
= 3(a + 1) \(⋮\)3 (ĐPCM)
3)
Gọi 3 số tự nhiên liên tiếp là a ; a + 1 ; a + 2
Khi đó a + a + 1 + a + 2
= 3a + 3
= 3(a + 1)
=> Tổng của 3 số liên không chia hết cho 4 (ĐPCM)
1. Ta có: ab + ba = 10a +b + 10b +a= 11a + 11b
= 11 ( a + b) \(⋮11\)
Ta có: ab - ba = 10a +b - (10b + a) = 10a +b -10b -a
= 9a - 9b = 9 (a-b) \(⋮9\)
2. Gọi 3 số tự nhiên liên tiếp là x; x+1; x+2
Ta có: x + x+1 +x +2= (x + x+x) + (1 +2)
= 3x + 3 = 3 ( x+1) \(⋮3\)
a) Tổng của ba số tự nhiên liên tiếp có chia hết cho 3 không ?
b) Tổng của bốn số tự nhiên liên tiếp có chia hết cho 4 không ?
c) Chứng tỏ rằng trong ba số tự nhiên liên tiếp có một số chia hết cho 3
d) Chứng tỏ rằng trong bốn số tự nhiên liên tiếp có một số chia hết cho 4
A, CÓ
B,KHÔNG
C,GOI BA SO TU NHIEN LIEN TIEP LA A,A+1, A+2,
(a+a+a)+ (1+2)
3a+3 chia hết cho 3
vi 3chia hết cho 3
vậy tổng 3 số tự nhiên liên tiếp chia hết cho 3
gọi 4 số tự nhiên liên tiếp là a,á+1,a+2,a+3
(a+a+a+a)+(1+2+3)
4a+6 không chia hết cho 3 vì 4 không chia hết cho 3
vậy tổng 4 số tự nhiên liên tiếp không chia hết cho 3
nếu câu a và câu b có vì sao thì sẽ làm thế nào
Đáp án của mik là:..............
Nhớ k cho mik nha!
1.Chứng tỏ rằng:
a)Trong hai số tự nhiên liên tiếp ,có một số chia hết cho 2
b)Trong hai số tự nhiên liên tiếp ,có một số chia hết cho 3
2.Chứng tỏ rằng:
a)Tổng của 3 số tự nhiên liên tiếp là một số chia hết cho 3
b)Tổng của 4 số tự nhiên liên tiếp là một số không chia hết cho 4
3.Chứng tỏ rằng số có dạng aaaaaa bao giờ cũng chia hết cho 7
4.Chứng tỏ rằng số có dạng abcabc bao giờ cũng chia hết cho 11
5. Chứng tỏ rằng nếu hai số có cùng số dư khi chia co 7 thì hiệu của chúng chia hết
Giúp mình nha mình đang gấp lắm!!!
Câu 5 là chỗ cuối cùng là chia hết cho 7 nha .mình quên ghi
Bài 3. Tìm các chữ số sao cho số 7a4b chia hết cho 4 và chia hết cho 7
Bài 2. Tìm số tự nhiên n để 3n +
Bài 4. Chứng tỏ rằng trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3
Bài 5. Chứng tỏ rằng tổng của 4 số tự nhiên liên tiếp không chia hết cho 4
Gọi 3 số tự nhiên liên tiếp là a; a+1 và a+2
TH1: Nếu a chia hết cho 3 => Đề bài đúng
TH2: Nếu a chia 3 dư 1 => a= 3k +1 (k thuộc N)
=> a+2 = 3k+1+2= 3k+3=3(k+1) chia hết cho 3 => a+2 chia hết cho 3 => Đề bài đúng
TH3: Nếu a chia 3 dư 2 => a=3k +2 (k thuộc N)
=> a + 1 = 3k + 2 + 1 = 3k +3 = 3(k+1) chia hết cho 3 => a+1 chia hết cho 3 => Đề bài đúng
TH1 , TH2 , TH3 => Trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3 (ĐPCM)
Bài 5:
Gọi 4 số tự nhiên liên tiếp là b; b+1; b+2 và b+3
Tổng 4 số: b + (b+1) + (b+2) + (b+3) = (b+b+b+b) + (1+2+3) = 4b + 6 = 4(b+1) + 2
Ta có: 4(b+1) chia hết cho 4 vì 4 chia hết cho 4
Nhưng: 2 không chia hết cho 4
Nên: 4(b+1)+2 không chia hết cho 4
Tức là: b+(b+1)+(b+2)+(b+3) không chia hết cho 4
Vậy: Tổng 4 số tự nhiên liên tiếp không chia hết cho 4 (ĐPCM)
Bài 3:
\(\overline{7a4b}\) ⋮ 4 ⇒ \(\overline{4b}\)⋮ 4 ⇒ b = 0; 4; 8
Nếu b = 0 ta có: \(\overline{7a40}\)⋮ 7
⇒ 7040 + a \(\times\) 100 ⋮ 7
1005\(\times\) 7+ 5 + 14a + 2a ⋮ 7
5 + 2a ⋮ 7 ⇒ 2a = 2; 9; 16⇒ a = 1; \(\dfrac{9}{3}\);8 (1)
Nếu b = 8 ta có: \(\overline{7a4b}\) = \(\overline{7a48}\)⋮ 7
⇒ 7048 + a\(\times\) 100 ⋮ 7
1006\(\times\) 7 + 6 + 14a + 2a ⋮ 7
6 + 2a ⋮ 7 ⇒ 2a = 1; 8; 15 ⇒ a = \(\dfrac{1}{2}\); 4; \(\dfrac{15}{2}\) (2)
Nếu b = 4 ta có: \(\overline{7a4b}\) = \(\overline{7a44}\) ⋮ 7
⇒ 7044 + 100a ⋮ 7
1006.7 + 2 + 14a + 2a ⋮ 7
2 + 2a ⋮ 7 ⇒ 2a = 5; 12;19 ⇒ a = \(\dfrac{5}{2}\); 6; \(\dfrac{9}{2}\) (3)
Kết hợp (1); (2); (3) ta có:
(a;b) = (1;0); (8;0); (4;8); (6;4)
a)Tổng của ba số tự nhiên liên tiếp có chia hết cho 3 không ?
b)Tổng của bốn số tự nhiên liên tiếp có chia hết cho 4 không ?
c)Chứng tỏ rằng trong 3 số tự nhiên liên tiếp có một số chia hết cho 3 .
d)Chứng tỏ rằng trong 4 số tự nhiên liên tiếp có một số chia hết cho 4 .
Giúp Dii với nha mn <3
d,
Gọi 4 số tự nhiên liên tiếp đó là k;k+1.k+2.k+3
nếu k chia hết cho 4 thì -> điều phài cm
nếu k chia cho 4 dư 1 thì k+3 chia hết cho 4 -> điều phài cm
nếu k chia cho 4 dư 2 thì k+2 chia hết cho 4 -> điều phài cm
nếu k chia cho 4 dư 3 thì k+1 chia hết cho 4 -> điều phài cm
c,
Gọi 3 số tự nhiên liên tiếp là a, a +1, a + 2 ( a thuộc N )
Ta xét 3 trường hợp :
TH1: a chia cho 3 dư 0
Suy ra : a chia hết cho 3
TH2: a chia cho 3 dư 1
Ta có : a = 3q + 1
a + 2 = 3q +1 + 2
a + 2 = 3q + 3
a + 2 = 3q + 3 .1
a + 2 = 3.(q + 1 )
Suy ra : a +2 chia hết cho 3
TH3 : a chia cho 3 dư 2
Ta có : a = 3q + 2
a + 1 = 3q +2 + 1
a + 1 = 3q + 3
a + 1 = 3q + 3 .1
a + 1 = 3.(q + 1)
Suy ra : a + 1 chia hết cho 3
Vậy trong 3 số tự nhiên liên tiếp có duy nhất 1 số chia hết cho 3
1.Trong ba số tự nhiên liên tiếp , có một số chia hết cho 3
2.Khi chia số tự nhiên a cho 24 , ta được số dư là 10 . Hỏi số a có chia hết cho 2
không ? có chia hết cho 4 không?
3. Chứng tỏ rằng:
a)Tống của ba số tự nhiên liên tiếp là một số chia hết cho 3
b)Tổng của bốn số tự nhiên liên tiếp là một số không chia hết cho 4
1/
Gọi 3 số tự nhiên liên tiếp là n; n+1; n+2
+ Nếu \(n⋮3\) Bài toán đã được c/m
+ Nếu n chia 3 dư 1 => \(n+2⋮3\)
+ Nếu n chia 3 dư 2 => \(n+1⋮3\)
Vậy trong 3 số tự nhiên liên tiếp bao giờ cũng có 1 số chia hết cho 3
2/ \(a-10⋮24\) => a-10 đồng thời chia hết cho 3 và 8 vì 3 và 8 nguyên tố cùng nhau
\(\Rightarrow a-10=8k\Rightarrow a=8k+10⋮2\)
\(a=8k+10=8k+8+2=8\left(k+1\right)+2=2.4.\left(k+1\right)+2\)
\(2.4.\left(k+1\right)⋮4\) => a không chia hết cho 4
3/
a/ Gọi 3 số TN liên tiếp là n; n+1; n+2
\(\Rightarrow n+n+1+n+2=3n+3=3\left(n+1\right)⋮3\)
b/ Gọi 4 số TN liên tiếp là n; n+1; n+2; n+3
\(\Rightarrow n+n+1+n+2+n+3=4n+6=4n+4+2=4\left(n+1\right)+2\)
Ta có \(4\left(n+1\right)⋮4\) => tổng 4 số TN liên tiếp không chia hết cho 4
Cho b là một số tự nhiên không chia hết cho 3 . Chứng tỏ rằng b2--1 chia hết cho 3
b là số tự nhiên ko chia hết cho 3, xét 2 trường hợp xảy ra của b :
+) TH1 : b = 3k + 1
=> b2 - 1 = ( 3k + 1 )2 - 1
= 9k2 + 6k + 1 - 1
= 9k2 + 6k
= 3 ( 3k2 + 2k ) chia hết cho 3 ( đpcm )
+) TH2: b = 3k + 2
=> b2 - 1 = ( 3k + 2 )2 - 1
= 9k2 + 12k + 4 - 1
= 9k2 + 12k + 3
= 3 ( 3k2 + 4k + 1 ) chia hết cho 3 ( đpcm )
P/s: hằng đẳng thức lớp 6 chưa học nhưng bạn cố hiểu nhé :D
a . Tổng của 3 số tự nhiên liên tiếp có cia hết cho 3 hay không
b . Tổng của bốn số tự nhiên liên tiếp có chia hết cho 4 hay không
c . Chưng tỏ rằng trong 3 số tự nhiên liên tiếp có một số chia hết cho 3
d . Chứng tỏ rằng trong 4 số tự nhiên liên tiếp cố một số chia hết cho 4