tìm số tự nhiên n để 3.n+29 chia hết cho n+3
Tìm các số tự nhiên a,b để:
n = 5a + 6b chia hết cho 3
Lời giải:
Với mọi số tự nhiên $b$ thì $6b=3.2b\vdots 3$ nên để $n=5a+6b\vdots 3$ thì $5a\vdots 3$
Mà $5\not\vdots 3$ nên điều này xảy ra khi $a\vdots 3$
Vậy với mọi số tự nhiên $b$ và mọi số tự nhiên $a$ sao cho $a\vdots 3$ thì $n=5a+6b\vdots 3$
a) Tìm số tự nhiên n sao cho ( 3.n+5) chia hết cho ( 3.n-1)
b) Tìm số tự nhiên n sao cho 2.n+3 chia hết cho 2.n-1
a)\(3n+5⋮3n-1\Rightarrow6+3n-1⋮3n-1\)
Mà \(3n-1⋮3n-1\Rightarrow6⋮3n-1\)
\(\Rightarrow3n-1\inƯ\left(6\right)\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
\(\Rightarrow3n\in\left\{-5;-2;-1;0;2;3;4;7\right\}\)
\(\Rightarrow n\in\left\{\frac{-5}{3};\frac{-2}{3};\frac{-1}{3};0;\frac{2}{3};1;\frac{4}{3};\frac{7}{3}\right\}\)
Mà \(n\in N\)
\(\Rightarrow n\in\left\{0;1\right\}\)
b)\(2n+3⋮2n-1\Rightarrow4+2n-1⋮2n-1\)
Mà \(2n-1⋮2n-1\Rightarrow4⋮2n-1\)
\(\Rightarrow2n-1\in\left\{-4;-2;-1;1;2;4\right\}\)
\(\Rightarrow2n\in\left\{-3;-1;0;2;3;5\right\}\)
\(\Rightarrow n\in\left\{\frac{-3}{2};\frac{-1}{2};0;1;\frac{3}{2};\frac{5}{2}\right\}\)
Mà \(n\in N\)
\(\Rightarrow n\in\left\{0;1\right\}\)
Hok Tốt!
Tìm số tự nhiên n để: n-1 chia hết cho n-6
Ta có: (n-1)/(n-6)=[(n-6)+5]/(n-6)=(n-6)/(n-6)+5/(n-6)=1+5/(n-6)
Vì 1 là số tự nhiên nên để n-1 chia hết cho 6 thì 5/(n-6) phải là số tự nhiên nên 5 phải chia hết cho n-6
Nghĩa là: n-6 thuộc ước của 5={1;5}
Do đó
n-6 | 1 | 5 |
n | 7 | 11 |
Vậy với n thuộc {7;11} thì n-1 chia hết cho n-6
TÌM SỐ TỰ NHIÊN n để 10-2n chia hết cho n - 2
Tìm số tự nhiên n để
n2 +3 chia hết cho n - 1
\(n^2+3\)chia hết cho n - 1
\(\Rightarrow\)\(n^2-1+4\) chia hết cho n - 1
\(\Rightarrow\)\(n^2-1^2+4\) chia hết cho n - 1
(n - 1)(n + 1) + 4 chia hết cho n - 1 (1)
Mà (n - 1)(n + 1) chia hết cho n - 1 (2)
Từ (1) và (2) \(\Rightarrow\)4 chia hết cho n - 1\(\Rightarrow\)n - 1 \(\in\)Ư(4) = {1 ; 2 ; 4}
\(\Rightarrow\)n \(\in\){2 ; 3 ; 5}
Tìm số tự nhiên n để :
A,(3n+2) chia hết(2n+3)
B,(4n+8)chia hết(3n+2)
1 .Tìm x thuộc số tự nhiên để
a) 17 chia hết cho n
b) (14+3n) chia hết cho n
c) (3n+14) chia hết cho (3n+1)
n+ 3 chia hết cho n +1 tìm số tự nhiên n để
6n + 12 chia hết cho 3n+4
6n+3 chia hết cho 3n+6
1) \(\left(n+3\right)⋮\left(n+1\right)\)
\(\Rightarrow\left(n+1\right)+2⋮\left(n+1\right)\)
\(\Rightarrow\left(n+1\right)\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
Do \(n\in N\)
\(\Rightarrow n\in\left\{0;1\right\}\)
2) \(\Rightarrow2\left(3n+4\right)+4⋮\left(3n+4\right)\)
\(\Rightarrow\left(3n+4\right)\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)
Do \(n\in N\)
\(\Rightarrow n\in\left\{0\right\}\)
3) \(\Rightarrow2\left(3n+6\right)-9⋮\left(3n+6\right)\)
\(\Rightarrow\left(3n+6\right)\inƯ\left(9\right)=\left\{-9;-3;-1;1;3;9\right\}\)
Do \(n\in N\)
\(\Rightarrow n\in\left\{1\right\}\)
MN CHỈ GIÚP EM BÀI NÀY VỚI Ạ!! EM ĐANG CẦN GẤP
EM CẢM ƠN
Cho số tự nhiên n = 5a + 4b ( a, b ϵ N ). Tìm các số a và b để:
a) n chia hết cho 2
b) n chia hết cho 5
c) n chia hết cho 10
Tham khảo nhé:
a)
Để chia hết cho 2 thì và .
mà thì
còn thì luôn đúng.
Vậy để thì , hay và
b)
Để chia hết cho 5 thì và .
mà thì luôn đúng
còn thì .
Vậy để thì , hay và
c)
Để chia hết cho 10 thì và .
mà thì
còn thì .
Vậy để thì và ,
hay
Giải thích:
Số chia hết cho 2 là số chẵn có dạng
Số chia hết cho 5 là số tận cùng là 0 và 5 hay là số có dạng
Số chia hết cho 10 là số chia hết cho cả 2 và 5 nên có dạng là
THAM KHẢO nhé:
a)
Để chia hết cho 2 thì và .
mà thì
còn thì luôn đúng.
Vậy để thì , hay và
b)
Để chia hết cho 5 thì và .
mà thì luôn đúng
còn thì .
Vậy để thì , hay và
c)
Để chia hết cho 10 thì và .
mà thì
còn thì .
Vậy để thì và ,
hay
Giải thích:
Số chia hết cho 2 là số chẵn có dạng
Số chia hết cho 5 là số tận cùng là 0 và 5 hay là số có dạng
Số chia hết cho 10 là số chia hết cho cả 2 và 5 nên có dạng là