tìm n \(\in N\) để \(n^2+n+6\) là số chính phương
Bài 3: Tìm số nguyên n để C=4n^2+n+4 là số chính phương.
Bài 4: Tìm số nguyên n để A=n^2+6n+2 là số chính phương.
Bài 5: Tìm số nguyên n để B=n^2+n+23 là số chính phương.
Bài 6: Tìm số tự nhiên n để M=1!+2!+3!+....+n! là số chính phương.
Bài 7: Tìm số nguyên n để N=n^2022+1 là số chính phương.
tìm n \(\in\) N để \(n^2+n+6\) là số chính phương
Đặt \(n^2+n+6=a^2\)
\(\Leftrightarrow4n^2+4n+24=4a^2\)
\(\Leftrightarrow4n^2+4n+1+23=4a^2\)
\(\Leftrightarrow\left(2n+1\right)^2+23=4a^2\)
\(\Leftrightarrow4a^2-\left(2n+1\right)^2=23\)
\(\Leftrightarrow\left(2a-2n-1\right)\left(2a+2n+1\right)=23\)
\(\forall n\in N\)thì \(2a+2n+1>2a-2n-1>0\)
\(\Rightarrow\left\{{}\begin{matrix}2a+2n+1=23\\2a-2n-1=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=6\\n=5\end{matrix}\right.\)
Vậy n = 5
Tìm n thuộc N để :
a;2^n + 1 là số chính phương
b;3^6 + 3^n là số chính phương
c; n^2 + 2002 là số chính phương
d; n + 1945 và n + 2004 là số chính phương
Tìm n thuộc N để n^2 + n + 6 là số chính phương
Ta có
\(n^2< n^2+n+6< n^2+6n+9\)
\(\Leftrightarrow n^2< n^2+n+6< \left(n+3\right)^2\)
Vì n2 +n+ 6 là số chính phương nên
\(\left(n^2+n+6\right)=\left(\left(n+1\right)^2;\left(n+2\right)^2\right)\)
Thế vô giải ra được n = 5
Tìm n thuộc N để n^2 + n + 6 là số chính phương
Tìm n thuộc N để n^2 + n + 6 là số chính phương
Câu1:Tìm n để 2^8 + 2^11 + 2^n là số chính phương
Câu 2: Cho S= 1x2x3+2x3x4+......+49x50x51.Tìm n để 4S+n là số chính phương
Câu 3:Tìm n để n^2 + 2n + 12 là số chính phương
Tìm số tự nhiên n để n^2 + 2n + 6 là 1 số chính phương
Do \(n^2+2n+6\) là số chính phương nên đặt: \(n^2+2n+6=a^2\)
\(\Rightarrow n^2+2n+1+5=a^2\)
\(\Rightarrow\left(n^2+2n+1\right)+5=a^2\)
\(\Rightarrow\left(n+1\right)^2+5=a^2\)
\(\Rightarrow a^2-\left(n+1\right)^2=5\)
\(\Rightarrow\left(a+n+1\right)\left(a-n-1\right)=5\)
\(\Rightarrow\left(a+n+1\right)\left(a-n-1\right)=5\cdot1\)
Ta có: \(a+n+1>a-n-1\)
\(\Rightarrow\left\{{}\begin{matrix}a+n+1=5\\a-n-1=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+n=4\\a-n=2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=\left(4+2\right):2\\n=\left(4-2\right):2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=3\\n=1\end{matrix}\right.\)
Vậy: \(n^2+2n+6\) là số chính phương khi \(n=1\)
\(n^2+2n+6\) là số chính phương
Đặt \(n^2+2n+6=k^2\left(k\in N\right)\)
\(\Leftrightarrow4n^2+8n+24=4k^2\)
\(\Leftrightarrow4n^2+8n+1+23=\left(2k\right)^2\)
\(\Leftrightarrow\left(2n+1\right)^2+23=\left(2k\right)^2\)
\(\Leftrightarrow\left(2k\right)^2-\left(2n+1\right)^2=23\)
\(\Leftrightarrow\left(2k+2n+1\right)\left(2k-2n-1\right)=23\)
mà \(2k+2n+1>2k-2n-1,\forall a;k\in N\)
\(\Leftrightarrow\left\{{}\begin{matrix}2k+2n+1=23\\2k-2n-1=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2k+2n=22\\2k-2n=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}k+n=11\\k-n=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}k=6\\n=5\end{matrix}\right.\)
Vậy \(n=5\) thỏa mãn đề bài
Tìm số nguyên dương n để n2 + n + 6 là số chính phương
đặt A2=n2+n+6
=>4A2=4n2+4n+24
=(2n+1)2+23
<=>(2A-2n-1)(2A+2n+1)=23
=>x=....
Đặt : A2 = n2 + n + 6
=> 4A2 = 4n2 + 4n + 24
= ( 2n + 1 )2 + 23
<=> ( 2A - 2n - 1 ) ( 2A + 2n + 1 )
= 23
Suy ra: x = 23