Tìm MinA = x - \(\sqrt{x-2008}\)+ \(\frac{1}{4}\)
Cho biểu thức A=\(\frac{2x\sqrt{x-4}}{x-4}\)(x>4) .Tìm minA
tìm GTNN của biểu thức \(x-\sqrt{x-2008}+\frac{1}{4}\)
Đặt \(t=\sqrt{x-2008},t\ge0\) \(\Rightarrow x=t^2+2008\) thay vào BT :
\(t^2+2008-t+\frac{1}{4}=\left(t-\frac{1}{2}\right)^2+2008\ge2008\)
Đẳng thức xảy ra khi t = 1/2 <=> x = 1/4
Vậy BT đạt giá trị nhỏ nhất bằng 2008 khi x = 1/4
đẳng thức xảy ra khi t = 1/2 <=> x = 8033/4
cái này mới đúng nhé!
\(x-\sqrt{x-2008}+\frac{1}{4}=\left(\left(x-2008\right)-\frac{2\sqrt{x-2008}}{2}+\frac{1}{4}\right)+2008\)
\(=\left(\sqrt{x-2008}-\frac{1}{2}\right)^2+2008\ge2008\)
Vậy GTNN là 2008
Tìm giá trị nhỏ nhất của A=\(x-\sqrt{x-2008}+\frac{1}{4}\)
\(dk.ton.tai.A..x\ge2008\)
\(A=x-\sqrt{x-2008}+\frac{1}{4}=\left(x-2008\right)-\sqrt{x-2008}+\frac{1}{4}+2008\)
\(A=\left(\sqrt{x-2008}\right)^2-2.\frac{1}{2}.\sqrt{x-2008}+\left(\frac{1}{2}\right)^2+2008\)
\(A=\left(\sqrt{x-2008}-\frac{1}{2}\right)^2+2008\ge2008\)
đẳng thức khi \(\sqrt{x-2008}=\frac{1}{2}\Leftrightarrow x=2008+\frac{1}{4}\)
Tìm GTNN của \(x+\sqrt{x-2008}+\frac{1}{4}\)( GTNN là số nguyên)
Đặt \(t=\sqrt{x-2008},t\ge0\) . Vậy thì \(x=t^2+2008\)
Từ đó ta đưa bài toán về tìm giá trị nhỏ nhất của \(t^2+t+2008+\frac{1}{4}\)
Tới đây bạn có thể tự làm được :)
Tìm min của biểu thức
\(A=32\frac{x}{y}+2008\frac{y}{x}\left(vớix+\frac{1}{y}\le1\right)\)
Tìm max và min của
\(B=3\sqrt{x-1}+4\sqrt{5-x}\)
Tính \(y=\frac{1}{\sqrt{x}+\sqrt{x+1}}+\frac{1}{\sqrt{x+2}-\sqrt{x+1}}+\frac{1}{\sqrt{x+3}+\sqrt{x+2}}+..+\frac{1}{\sqrt{x+2008}+\sqrt{x+2007}}\)với x=\(\sqrt[2007]{2008}\)
Tìm min
A = x - 2\(\sqrt{x+1}\) - 2\(\sqrt{x-2}\) + 10
giê ơt nha bn
Cho biểu thức: \(P=\frac{1}{\sqrt{x}+1}+\frac{2}{x-\sqrt{x}+1}-\frac{3}{x\sqrt{x}+1},x>0\)
Cho \(\sqrt{x}+\frac{1}{\sqrt{x}}=2008\)
Không giải phương trình để tìm x, hãy tính giá trị của P
Đầu tiên là rút gọn P
P
\(=\frac{1}{\sqrt{x}+1}+\frac{2}{x-\sqrt{x}+1}-\frac{3}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)
\(=\frac{1x+\sqrt{x}}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\frac{\sqrt{x}}{x-\sqrt{x}+1}\)
\(\Rightarrow\frac{1}{P}=\frac{x-\sqrt{x}+1}{\sqrt{x}}=\sqrt{x}-1+\frac{1}{\sqrt{x}}=-1+2008=2007\)
\(\Rightarrow P=\frac{1}{2007}\)
tìm min
A=\(\dfrac{x+63}{\sqrt{x}+1}\)