So sánh A= \(\frac{2000^{2014}}{2000^{2015-1}}\) và B = \(\frac{2000^{2015}}{2000^{2016-1}}\)
so sánh A=\(\frac{2000^{2014}}{2000^{2015}-1}\)và B=\(\frac{2000^{2015}}{2000^{2016}-1}\)
So sánh A = \(\frac{2000^{2014}}{2000^{2015}-1}\) và B=\(\frac{2000^{2015}}{2000^{2016}-1}\)
Ta có:
\(A=\frac{2000^{2014}}{2000^{2015}-1}=\frac{2000^{2014}\cdot2000}{\left(2000^{2015}-1\right)\cdot2000}=\frac{2000^{2015}}{2000^{2016}-2000}\)
Vì có cùng tử số và 20002016-2000 < 20002016-1 nên \(\frac{2000^{2015}}{2000^{2016}-2000}>\frac{2000^{2015}}{2000^{2016}-1}\)
nên A>B
Xét A trước ta có
2000A=2000.2000^2014/2000^2015-1
2000A=2000^2015-1+1999/2000^2015-1
2000A=1+1999/2000^2015-1
2000B=2000^2015.2000/2000^2016-1
2000B=2000^2016-1+1999/2000^2016-1
2000B=1+1999/2000^2016-1
Ta thấy 2000A>2000B
suy ra A>B
So sánh A = \(\frac{2000^{2014}}{2000^{2015}-1}\); B=\(\frac{2000^{2015}}{2000^{2016}-1}\)
Bây giờ mình mới thấy dễ:
Ta có: \(A=\frac{2000^{2014}}{2000^{2015}-1}=\frac{2000^{2014}\times2000}{\left(2000^{2015}-1\right)\times2000}=\frac{2000^{2015}}{2000^{2016}-2000}\)
Vì có cùng tử số và 20002016-2000 < 20002016-1 nên \(\frac{2000^{2015}}{2000^{2016}-2000}\)> \(\frac{2000^{2015}}{2000^{2016}-1}\)
nên A>B
Nhớ có lời giải nha mấy bạn!! thanks nhìu
so sánh A = 2000^2014/2000^2015 -1 và B = 2000^2015/ 2000^ 2016 -1 ta được A ............. B
So sánh A và B
a) A = \(\frac{10^{11}-1}{10^{12}-1}\) Và \(B=\frac{10^{10}+1}{10^{11}+1}\)
b) \(A=\frac{2000^{2015}+1}{2000^{2016}+1}\) Và \(B=\frac{2000^{2014}+1}{2000^{2015}+1}\)
b, 2000A = \(\frac{2000\left(2000^{2015}+1\right)}{2000^{2016}+1}\)
= \(\frac{2000^{2016}+2000}{2000^{2016}+1}\)
= \(\frac{\left(2000^{2016}+1\right)+1999}{2000^{2016}+1}\)
= \(\frac{2000^{2016}+1}{2000^{2016}+1}\) + \(\frac{1999}{2000^{2016}+1}\)
= 1 + \(\frac{1999}{2000^{2016}+1}\)
2000B = \(\frac{2000\left(2000^{2014}+1\right)}{2000^{2015}+1}\)
= \(\frac{2000^{2015}+2000}{2000^{2015}+1}\)
= \(\frac{\left(2000^{2015}+1\right)+1999}{2000^{2015}+1}\)
= \(\frac{2000^{2015}+1}{2000^{2015}+1}\) + \(\frac{1999}{2000^{2015}+1}\)
= 1 + \(\frac{1999}{2000^{2015}+1}\)
So sanh
câu b tiếp
So sánh 2000A với 2000B
Vì \(\frac{1999}{2000^{2016}+1}\) < \(\frac{1999}{2000^{2015}+1}\)
→ 2000A< 2000B
→ A<B
so sánh A = 2000^2014/2000^2015 -1 và B = 2000^2015/ 2000^ 2016 -1 ta được A ............. B
so sánh A = 2000^2014/2000^2015 -1 và B = 2000^2015/ 2000^ 2016 -1 ta được A ............. B
Câu hỏi tương tự Đọc thêmToán lớp 6
B=2014*2016+2000/2015*2015+1999
Hãy so sánh B Với 1 mà không dùng phép tính
Cho A = \(\frac{2000}{2001}+\frac{2001}{2002}+\frac{2002}{2003}+\frac{2003}{2004}+\frac{2005}{2006}+\frac{2006}{2007}+\frac{2007}{2008}+\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2016}\)
Hãy so sánh tổng các phân số trong A và so sánh với 15.
mỗi số hạng trong biểu thức A đều nhỏ hơn 1 mà có 15 số nên tổng A sẽ nhỏ hơn 15
ta thay tong tren <1+1+1+1+1+1+1+1+1+1+1+1+1+1+1
hay tong tren be hon 15
So sánh 2 phân số sau:\(\frac{2014}{2015}.......\frac{2000}{2001}\)
phan so 2014/2015 lon hon nhe
k cho mình nhé hjhj
Có \(\frac{2014}{2015}\)=1 - \(\frac{1}{2015}\)và \(\frac{2000}{2001}\)= 1 - \(\frac{1}{2001}\)
Rồi tự so sánh 1 - \(\frac{1}{2015}\)và 1 - \(\frac{1}{2001}\)
Kết quả là \(\frac{2014}{2015}\)> \(\frac{2000}{2001}\)