cho 3x+y chia hết cho 7(x,y là số tự nhiên ).Chứng minh :5x-3y cũng chia hết cho 7
Cho x; y là số tự nhiên :
a , Biết 3x + 2y chia hết
Chứng minh 5x + 7y chia hết cho 11
b , Biết x + 3y chia hết cho 7
Chứng minh 5x + y chia hết cho 7
a/
5x+7y=11(x+y)-(6x+4y)=11(x+y)-2(3x+2y)
11(x+y) chia hết cho 11; 3x+2y chia hết cho 11 => 2(3x+2y) chia hết cho 11
=> 5x+7y chia hết cho 11
b/
5x+y=7(x+y)-(2x+6y)=7(x+y)-2(x+3y)
7(x+y) chia hết cho 7; x+3y chia hết cho 7 => 2(x+3y) chia hết cho 7
=> 5x+y chia hết cho 7
cho x,y là các số tự nhiên chứng minh rằng 3x+y chia hết cho 7 khi và chỉ khi 2x+3y chia hết cho 7
2x + 3y chia hết cho 7
=> 3(2x+3y) chia hết cho 7
hay 6x+ 9y chia hết cho 7 (1)
3x + y chia hết cho 7
=> 2(3x+y) chia hết cho 7
hay 6x + 2y chia hết cho 7
xét hiệu
=> 6x + 9y - (6x + 2y)
= 6x -+ 9y - 6x - 2y
= 7y chia hết cho 7 (2)
từ 1 và 2
=> 6x + 2y chia hết cho 7
hay 3x + y chia hết cho 7 (đpcm)
Chứng Minh: Nếu x,y là các số tự nhiên sao cho 3x-y+1 và 2x+3y-1 đều chia hết cho 7 thì x,y chia cho 7 đều dư 3
Chứng minh rằng:
a)10n-1 chia hết cho 99, với n là số tự nhiên chẵn
b)Nếu 3x+5y chia hết cho 7 thì x+4y chia hết cho 7 (x,y là các số tự nhiên) và ngược lại
c)Nếu 2x+3y chia hết cho 17 thì 9x+5y chia hết cho 17 (x,y là các số tự nhiên).Điều đó ngược lại có đúng
không?
TẤT CẢ ĐỀU CÓ TRONG " câu hỏi tương tự "
cho x, y là số tự nhiên sao cho x + 3y chia hết cho 4. Chứng minh rằng: 3x + y chia hết cho 4.
THAM SỜ KHẢO SỜ NHA;
2x + 3y chia hết cho 7
=> 3(2x+3y) chia hết cho 7
hay 6x+ 9y chia hết cho 7 (1)
3x + y chia hết cho 7
=> 2(3x+y) chia hết cho 7
hay 6x + 2y chia hết cho 7
xét hiệu
=> 6x + 9y - (6x + 2y)
= 6x -+ 9y - 6x - 2y
= 7y chia hết cho 7 (2)
từ 1 và 2
=> 6x + 2y chia hết cho 7
hay 3x + y chia hết cho 7 (đpcm)
Cho x, y là số tự nhiên thỏa mãn 3x - y + 1 chia hết cho 7, 2x + 3y - 1 chia hết cho 7. Chứng minh x và y chia 7 đều dư 3
Lời giải:
\(\left\{\begin{matrix} 3x-y+1\vdots 7\\ 2x+3y-1\vdots 7\end{matrix}\right.\Rightarrow \left\{\begin{matrix} 3(3x-y+1)\vdots 7\\ 2x+3y-1\vdots 7\end{matrix}\right.\)
\(\Rightarrow 3(3x-y+1)+(2x+3y-1)\vdots 7\)
\(\Rightarrow 11x+2\vdots 7\)
\(\Rightarrow 11(x-3)+35\vdots 7\Rightarrow 11(x-3)\vdots 7\Rightarrow x-3\vdots 7\)
\(\Rightarrow x\) chia 7 dư $3$
Đặt $x=7k+3$ thì:
\(3x-y+1\vdots 7\)
\(\Rightarrow 3(7k+3)-y+1\vdots 7\)
\(\Rightarrow 21k+7+3-y\vdots 7\Rightarrow 3-y\vdots 7\)
\(\Rightarrow y-3\vdots 7\) hay $y$ chia $7$ dư $3$
Vậy $x,y$ chia $7$ đều dư $3$
cho x, y là số tự nhiên sao cho x + 3y chia hết cho 9. chứng minh rằng: 4x + 3y chia hết cho 9.
\(x+3y⋮9\Rightarrow5\left(x+3y\right)=5x+15y⋮9\)
\(\Rightarrow\left(5x+15y\right)-\left(x+3y\right)=4x+12y⋮9\)
\(4x+12y=\left(4x+3y\right)+9y⋮9\)
\(9y⋮9\Rightarrow4x+3y⋮9\)
4 không chia hết cho 49. Bạn xem lại đề xem lỗi ở đâu.
cho x và y là các số tự nhiên sao cho 2x + 3y + 15 chia hết cho 17. Chứng tỏ rằng 19x + 3y + 32 cũng chia hết cho 17
ta có : 19x +3y +32 = 2x + 3y +15 +17x +17
= (2x +3y +15) + 17(x + 1) chia hết cho 17