Những câu hỏi liên quan
Lê Đình Quân
Xem chi tiết
Ngô quang minh
Xem chi tiết
Phan Thị Hà Vy
Xem chi tiết
Thanh Tùng DZ
26 tháng 4 2020 lúc 8:42

Ta có : \(\frac{x}{x^2-yz+2010}+\frac{y}{y^2-xz+2010}+\frac{z}{z^2-xy+2010}\)

\(=\frac{x^2}{x^3-xyz+2010x}+\frac{y^2}{y^3-xyz+2010y}+\frac{z^2}{z^3-xyz+2010z}\)

\(\ge\frac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz+2010\left(x+y+z\right)}=\frac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz+3\left(xy+yz+xz\right)\left(x+y+z\right)}\)

\(=\frac{\left(x+y+z\right)^2}{x^3+y^3+z^3+3xy^2+3x^2y+3x^2z+3xz^2+3y^2z+3yz^2}=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^3}=\frac{1}{x+y+z}\)

Bình luận (0)
 Khách vãng lai đã xóa
Thanh Tùng Nguyễn
Xem chi tiết
IS
17 tháng 3 2020 lúc 20:36

trước tiên ta phải cm: \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\left(#\right)\left(\forall a,b,c\in R;x,y,z>0\right)\)

dấu = xảy ra khi zà chỉ khi\(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)

thật zậy , zới \(a,b\in R;x,y>0\)ta có \(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\left(##\right)\left(a,b\in R;x,y>0\right)\)

\(\Leftrightarrow\left(a^2y+b^2x\right)\left(x+y\right)\ge xy\left(a+b\right)^2\Leftrightarrow\left(bx-ay\right)^2\ge0\)( luôn đúng )

 dấu = xảy ra khi zà chỉ khi\(\frac{a}{x}=\frac{b}{y}\)

* áp dụng bất đẳng thức (##) ta được 

\(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b\right)^2}{x+y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)

dấu = xảy ra khi zà chỉ khi \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)\

* áp dụng bất đẳng thức (#) ta có

vt = \(\frac{x^2}{x\left(x^2-yz+2010\right)}+\frac{y^2}{y\left(y^2-xz+2010\right)}+\frac{z^2}{z\left(z^2-xy+2010\right)}\)

   =\(\frac{x^2}{x\left(x^2-yz+2010\right)}+\frac{y^2}{y\left(y^2-xz+2010\right)}+\frac{z^2}{z\left(z^2-xy+2010\right)}\)

\(\ge\frac{\left(x+y+z\right)^3}{x^3+y^3+z^3-3xyz+2010\left(x+y+z\right)}\left(1\right)\)

Lưu ý nhé : \(x\left(x^2-yz+2010\right)=x\left(x^2+xy+zx+1340\right)>0\)

                  \(y\left(y^2-xz+2010\right)>0\)

                  \(z\left(z^2-xy+2010\right)>0\)

Ta có \(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)

                                                      \(=\left(x+y+z\right)\left[\left(x+y+z\right)^2-3\left(xy+yz+xz\right)\right]\)

                                       do dó       \(x^3+y^3+z^3-3xyz+2010\left(x+y+z\right)\)        \(\)

                                                     =\(\left(x+y+z\right)\left[\left(x+y+z\right)^2-3\left(xy+yz+zx\right)+2010\right]\)

                                                     =\(\left(x+y+z\right)^3\left(2\right)\)

Từ (1) zà (2) suy ra

vt \(\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^3}=\frac{1}{x+y+z}\)

dấu = xảy ra khi zà chỉ khi \(x=y=z=\frac{\sqrt{2010}}{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
chu thi hong van
18 tháng 3 2020 lúc 8:36

thí chủ có link koooooo

Bình luận (0)
 Khách vãng lai đã xóa
chu thi hong van
18 tháng 3 2020 lúc 8:37

vcl lớp 9

Bình luận (0)
 Khách vãng lai đã xóa
Trần Đức Thắng
Xem chi tiết
tống thị quỳnh
Xem chi tiết
Trần Hữu Ngọc Minh
24 tháng 12 2017 lúc 22:32

tiếp tục câu 2,vì máy bị lỗi nên phải tách ra:

Ta có:\(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)

\(=\left(x+y+z\right)\left(\left(x+y+z\right)^2-3\left(xy+xz+yz\right)\right).\)

Dó đó:\(x^3+y^3+z^3-3xyz+2010\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(\left(x+y+z\right)^2-3\left(xy+yz+xz\right)+2010\right)\)

\(=\left(x+y+z\right)^3.\)(2)

TỪ \(\left(1\right),\left(2\right)\)suy ra \(P\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^3}=\frac{1}{x+y+z}.\)

Dấu \(=\)xảy ra khi \(x=y=z=\frac{\sqrt{2010}}{3}\)

Bình luận (0)
Trần Hữu Ngọc Minh
24 tháng 12 2017 lúc 22:27

2)Ta có:

\(x\left(x^2-yz+2010\right)=x\left(x^2+xy+xz+1340\right)>0\)

Tương tự ta có:\(y\left(y^2-xz+2010\right)>0,z\left(z^2-xy+2010\right)>0\)

Áp dụng svac-xơ ta có:

\(P=\frac{x^2}{x\left(x^2-yz+2010\right)}+\frac{y^2}{y\left(y^2-xz+2010\right)}+\frac{z^2}{z\left(z^2-xy+2010\right)}\)

\(\ge\frac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz+2010\left(x+y+z\right)}.\)(1)

Bình luận (0)
Ichigo Sứ giả thần chết
Xem chi tiết
Trần Đức Long
3 tháng 3 2017 lúc 18:48

Bạn thay y xyz=2010 vào A ta được

A= xyz*x/xy+xyz*x+xyz + y/yz+y+xyz + z/xz+z+1

suy ra A=x^2yz/xy(1+xz+z) + y/y(z+1+xz) + z/xz+x+1

 A= xz/1+xz+z + 1/z+1+xz + x/xz+z+1 = xz+1+x/xz+1+x =1

Vay A=1

Bình luận (0)
Trịnh Hà My
Xem chi tiết
Lightning Farron
10 tháng 11 2016 lúc 22:36

gt pt nó thành nhân tử thay vào P tính

Bình luận (0)
Lightning Farron
10 tháng 11 2016 lúc 22:39

mk nhớ lm bài tương tự thế này r` bn chịu khó mở ra xem lại ở đây olm.vn/?g=page.display.showtrack&id=424601&limit=260, ấn vào chữ Trang tiếp theo để tìm thêm nhé

Bình luận (0)
Lightning Farron
10 tháng 11 2016 lúc 22:40

thôi mk lm luôn bn chờ tí

Bình luận (1)
lý canh hy
Xem chi tiết
hoa học trò
7 tháng 1 2019 lúc 20:21

giờ nhân cả tử và mẫu mỗi phân thức vs mỗi tử của nó rồi sử dụng BDT bunhiacopxki là ra thôi bn

Bình luận (0)
Đen đủi mất cái nik
8 tháng 1 2019 lúc 7:51

\(\frac{x^2}{x^3-xyz+2013x}+\frac{y^2}{y^3-xyz+2013y}+\frac{z^2}{z^3-xyz+2013z}\)

\(\ge\frac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz+3.\left(xy+yz+zx\right)\left(x+y+z\right)}\)

\(=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx+3xy+3yz+3zx\right)}=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)\left(x+y+z\right)^2}=\frac{1}{x+y+z}\)

Bình luận (0)
Kiệt Nguyễn
16 tháng 2 2020 lúc 7:56

\(VT=\text{Σ}_{cyc}\frac{x}{x^2-yz+2013}=\text{Σ}_{cyc}\frac{x^2}{x^3-xyz+2013x}\)

\(\ge\frac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz+2013\left(x+y+z\right)}\)(bđt Cauchy - Schwarz dạng Engel)

\(=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)+2013\left(x+y+z\right)}\)

\(=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx+2013\right)}\)

\(=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)\left[\left(x+y+z\right)^2-3\left(xy+yz+zx\right)+2013\right]}\)

\(=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)\left[\left(x+y+z\right)^2-3.671+2013\right]}\)

\(=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^3}=\frac{1}{x+y+z}\)

(Dấu "=" xảy ra khi x = y = z = \(\frac{\sqrt{2013}}{3}\))

Bình luận (0)
 Khách vãng lai đã xóa