Cho a,b,c thỏa mãn ab+bc+ca=0, a+b+c=0, tính P=(a+1)^1945+b^1975+(c-1)^2016
cho a,b,c khác 0 thỏa mãn ab/(a+b) = bc/(b+c)= ca/(c+a). tính: ( ab+bc+ca) mũ 1008/a mũ 2016+ b mũ 2016 + c mũ 2016
Cho 3 số a,b,c khác 0 thỏa mãn \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
Tính \(P=\frac{\left(ab+bc+ca\right)^{1008}}{a^{2016}+b^{2016}+c^{2016}}\)
Cho a,b,c thỏa
a+b+c=0
ab+bc+ca=0
Tinh A=(a+1)^2016 + (b-1)^2017 + c^2018
\(a+b+c=0\)
\(\Leftrightarrow\left(a+b+c\right)^2=0\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)
\(\Leftrightarrow a^2+b^2+c^2=0\)
=>a=b=c=0
\(A=\left(0+1\right)^{2016}+\left(0-1\right)^{2017}+0^{2018}\)
\(=1-1+0=0\)
1. Cho các số tự nhiên a,b,c thỏa mãn a^2+b^2+c^2=ab+bc+ca và a+b+c=3. Tính M=a^2016+2015b^2015+2020c
2.Cho x>y>0. Chứng minh x-y/x+y<x^2-y^2/x^2+y^2
1. Cho các số tự nhiên a,b,c thỏa mãn a2+b2+c2=ab+bc+ca và a+b+c=3. Tính M=a2016+2015b2015+2020c
a2+b2+c2=ab+bc+ca
<=> 2( a2+b2+c2 ) =2( ab+bc+ca )
<=> 2a2 + 2b2 + 2c2 = 2ab + 2bc + 2ca
<=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca = 0
<=> ( a2 - 2ab + b2 ) + ( b2 - 2bc + c2 ) + ( c2 - 2ca + a2 ) = 0
<=> ( a - b )2 + ( b - c )2 + ( c - a )2 = 0
Dễ chứng minh VT ≥ 0 ∀ a,b,c. Dấu "=" xảy ra <=> a=b=c
Lại có a+b+c=3 => a=b=c=1
từ đây bạn thế vào tính M nhé :))
2.Cho x>y>0. Chứng minh \(\frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\)
Ta có : \(\frac{x^2-y^2}{x^2+y^2}>\frac{x-y}{x+y}\)
<=> \(\frac{x^2-y^2}{x^2+y^2}-\frac{x-y}{x+y}>0\)
<=> \(\frac{\left(x^2-y^2\right)\left(x+y\right)}{\left(x^2+y^2\right)\left(x+y\right)}-\frac{\left(x^2+y^2\right)\left(x-y\right)}{\left(x^2+y^2\right)\left(x+y\right)}>0\)
<=> \(\frac{x^3+x^2y-xy^2-y^3}{\left(x^2+y^2\right)\left(x+y\right)}-\frac{x^3-x^2y+xy^2-y^3}{\left(x^2+y^2\right)\left(x+y\right)}>0\)
<=> \(\frac{x^3+x^2y-xy^2-y^3-x^3+x^2y-xy^2+y^3}{\left(x^2+y^2\right)\left(x+y\right)}>0\)
<=> \(\frac{2x^2y-2xy^2}{\left(x^2+y^2\right)\left(x+y\right)}>0\)
<=> \(\frac{2xy\left(x-y\right)}{\left(x^2+y^2\right)\left(x+y\right)}>0\)( đúng vì x > y > 0 )
=> đpcm
Bài 1: Cho a,b,c thỏa mãn: a+b+c=0; ab+bc+ca=0.
Tính M = ( a-1)2012 + b2014+ ( c+1)^2015.
Các đại ca toán đâu rồi, giúp em vs!!!!
\(a+b+c=0\Rightarrow c=-\left(a+b\right);\left(1\right)\)
\(ab+bc+ca=0\Rightarrow ab+c\left(a+b\right)=0;\left(2\right)\)
(1)(2)=>\(ab=c^2\)
tương tự trên
=>\(bc=a^2\)và \(ca=b^2\)
\(ab+bc+ca=0\Leftrightarrow c^2+a^2+b^2=0\Rightarrow a=b=c=0\)
=> M = 2
cho a,b,c>0 thỏa mãn a+b+c = 1
tính giá trị nhỏ nhất của biểu thức A= bc/a +ca/b + ab/c
cho a,b,c>0 thỏa mãn a+b+c=1. CMR: \(P=\sqrt{\dfrac{ab}{c+ab}}+\sqrt{\dfrac{bc}{a+bc}}+\sqrt{\dfrac{ca}{b+ca}}\le\dfrac{3}{2}\)
Cho a, b, c > 0 thỏa mãn a+b+c=1
Tính \(P=\left(\frac{a-bc}{a+bc}+\frac{b-ac}{b+ac}+\frac{c-ab}{c+ab}\right):\frac{ab+bc+ca+3abc}{ab+bc-abc}.\)
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
cho a,b,c>0. Thỏa mãn: ab+bc+ca+2abc=1. Chứng minh: 1/a+1/b+1/c >= 4(a+b+c)