(2/4x+y)^2
Rút gọn các biểu thức sau:
a) ((1/x^2+4x+4)-(1/x^2-4x+4)):((1/x+2)+(1/x^2-2))
b)((2x/2x-y)-(4x^2/4x^2+4xy+y^2)):((2x/4x^2-y^2)+(1/y-2x))
a,sửa đề : \(\left(\frac{1}{x^2+4x+4}-\frac{1}{x^2-4x+4}\right):\left(\frac{1}{x+2}+\frac{1}{x^2-4}\right)\)
\(=\left(\frac{1}{\left(x+2\right)^2}-\frac{1}{\left(x-2\right)^2}\right):\left(\frac{x-2+1}{\left(x+2\right)\left(x-2\right)}\right)\)
\(=\left(\frac{x^2-4x+4-x^2-4x-4}{\left(x+2\right)^2\left(x-2\right)^2}\right):\left(\frac{x-1}{\left(x+2\right)\left(x-2\right)}\right)\)
\(=\frac{-8x\left(x+2\right)\left(x-2\right)}{\left(x+2\right)^2\left(x-2\right)^2\left(x-1\right)}=\frac{-8x}{\left(x-1\right)\left(x^2-4\right)}\)
b, \(\left(\frac{2x}{2x-y}-\frac{4x^2}{4x^2+4xy+y^2}\right):\left(\frac{2x}{4x^2-y^2}+\frac{1}{y-2x}\right)\)
\(=\left(\frac{2x}{2x-y}-\frac{4x^2}{\left(2x+y\right)^2}\right):\left(\frac{2x}{\left(2x-y\right)\left(2x+y\right)}-\frac{1}{2x-y}\right)\)
\(=\left(\frac{2x\left(2x+y\right)^2-4x^2\left(2x-y\right)}{\left(2x-y\right)\left(2x+y\right)^2}\right):\left(\frac{2x-\left(2x+y\right)}{\left(2x-y\right)\left(2x+y\right)}\right)\)
\(=\left(\frac{8x^3+8x^2y+2xy^2-8x^3+4x^2y}{\left(2x-y\right)\left(2x+y\right)^2}\right):\left(\frac{-y}{\left(2x-y\right)\left(2x+y\right)}\right)\)
\(=-\left(\frac{12x^2y+xy^2}{2x+y}\right)=\frac{-12x^2y-xy^2}{2x+y}\)
a) (3x + 2)² + (4x + (4x - 1)² + (2 + 5x). (2-5x) y - 2 ) ² + 2(x+ x+y = z) (²-y) + (z - y)² Bat 3. Rut gọn các biểu thức sau a) (3x + 2)² + (4x + (4x - 1)² + (2 + 5x). (2-5x) y - 2 ) ² + 2(x+ x+y = z) (²-y) + (z - y)² Bài 4. Tính nhanh, 8.9² + dd² + 22.89. a) (3x + 2)² + (4x + (4x - 1)² + (2 + 5x). (2-5x) y - 2 ) ² + 2(x+ x+y = z) (²-y) + (z - y)² a) (3x + 2)² + (4x
Bạn ghi lại đề đi, khó nhìn quá
1)viết biểu thức dưới dạng tổng 2 bình phương: 4x^2 + y^2 - 4x + 10x + 26
2)tìm x, y: 4x^2 + y^2 - 4x +10y + 26 = 0
(4x * y ^ 3)/(x * y ^ 2 - x ^ 2 * y) + (4x ^ 3 * y)/(x ^ 2 * y - x * y ^ 2)
\(\dfrac{4xy^3}{xy^2-x^2y}+\dfrac{4x^3y}{x^2y-xy^2}\)
\(=\dfrac{4xy^3-4x^3y}{xy^2-x^2y}\)
\(=\dfrac{4xy\left(y^2-x^2\right)}{xy\left(y-x\right)}\)
\(=\dfrac{4\left(y-x\right)\left(y+x\right)}{y-x}=4\left(x+y\right)\)
(4x^2 +2xy+y^2)(2x-y)-(2x-y)(4x^2-2xy=y^2)
(4x2+2xy+y2)(2x-y)-(2x-y)(4x2-2xy+y2)
=(2x3-y3)-(2x+y)(4x2-2xy+y2)
=(2x3-y3)-(2x3+y3)
=2x3-y3-2x3+y3
=0
(2x+y)(4x^2 -2xy +y^2 )-(2x-y ) (4x^2 +2xy+y^2)
Câu: Đẳng thức nào sau đây là đúng. *
4x^3y^2 – 8x^2y^3 = 4x^2.y(xy – 2y^2)
4x^3y^2 – 8x^2y^3 = 4x^2y^2(x – 2y)
4x^3y^2 – 8x^2y^3 = x^2y^2(x – 2y)
4x^3y^2 – 8x^2y^3 = 4x^2y^2(x – y)
ta có 4 x 3 y 2 – 8 x 2 y 3 = 4 x 2 y 2 . x – 4 x 2 y 2 . 2 y = 4 x 2 y 2 ( x – 2 y )
Vậy 4x3y2 – 8x2y3 = 4x2y2(x – 2y)
Đáp án cần chọn là: C
bấm đúng cho mik đi
1/ (2x+y)(4x^2-2xy +y^2)-(2x-y)(4x^2+2xy+y^2
( 2x + y ) ( 4x2 - 2xy + y2 ) - ( 2x - y ) ( 4x2 + 2xy + y2 )
= 8x3 + y3 - ( 8x3 - y3 )
= 2y3
\(\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(=8x^3+y^3-\left(8x^3-y^3\right)\)
\(=8x^3+y^3-8x^3+y^3\)
\(=\left(8x^3-8x^3\right)+\left(y^3+y^3\right)\)
\(=2y^3\)
(2x + y)(4x2 – 2xy + y2) – (2x – y)(4x2 + 2xy + y2)
= (2x + y)[(2x)2 – 2x.y + y2] – (2x – y)[(2x)2 + 2x.y + y2]
= [(2x)3 + y3] – [(2x)3 – y3]
= (2x)3 + y3 – (2x)3 + y3
= 2y3
Vẽ đồ thị các hàm số sau:
a) \(y = {x^2} - 4x + 3\)
b) \(y = - {x^2} - 4x + 5\)
c) \(y = {x^2} - 4x + 5\)
d) \(y = - {x^2} - 2x - 1\)
Tham khảo:
a)
Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai \(y = {x^2} - 4x + 3\) là một parabol (P):
+ Có đỉnh S với hoành độ: \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - ( - 4)}}{{2.1}} = 2;{y_S} = {2^2} - 4.2 + 3 = - 1.\)
+ Có trục đối xứng là đường thẳng \(x = 2\) (đường thẳng này đi qua đỉnh S và song song với trục Oy);
+ Bề lõm quay lên trên vì \(a = 1 > 0\)
+ Cắt trục tung tại điểm có tung độ bằng 3, tức là đồ thị đi qua điểm có tọa độ (0; 3).
Ta vẽ được đồ thị như hình dưới.
b)
Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai \(y = - {x^2} - 4x + 5\) là một parabol (P):
+ Có đỉnh S với hoành độ: \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - ( - 4)}}{{2.( - 1)}} = - 2;{y_S} = - {( - 2)^2} - 4.( - 2) + 5 = 9.\)
+ Có trục đối xứng là đường thẳng \(x = - 2\) (đường thẳng này đi qua đỉnh S và song song với trục Oy);
+ Bề lõm quay xuống dưới vì \(a = - 1 < 0\)
+ Cắt trục tung tại điểm có tung độ bằng 5, tức là đồ thị đi qua điểm có tọa độ (0; 5).
Ta vẽ được đồ thị như hình dưới.
c) Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai \(y = {x^2} - 4x + 5\) là một parabol (P):
+ Có đỉnh S với hoành độ: \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - ( - 4)}}{{2.1}} = 2;{y_S} = {2^2} - 4.2 + 5 = 1.\)
+ Có trục đối xứng là đường thẳng \(x = 2\) (đường thẳng này đi qua đỉnh S và song song với trục Oy);
+ Bề lõm quay lên trên vì \(a = 1 > 0\)
+ Cắt trục tung tại điểm có tung độ bằng 5, tức là đồ thị đi qua điểm có tọa độ (0; 5).
Ta vẽ được đồ thị như hình dưới.
d)
Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai \(y = - {x^2} - 2x - 1\) là một parabol (P):
+ Có đỉnh S với hoành độ: \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - ( - 2)}}{{2.( - 1)}} = - 1;{y_S} = - {( - 1)^2} - 2.( - 1) - 1 = 0\)
+ Có trục đối xứng là đường thẳng \(x = - 1\) (đường thẳng này đi qua đỉnh S và song song với trục Oy);
+ Bề lõm quay xuống dưới vì \(a = - 1 < 0\)
+ Cắt trục tung tại điểm có tung độ bằng -1, tức là đồ thị đi qua gốc tọa độ (0; -1).
Ta vẽ được đồ thị như hình dưới.