1. tính A= 1/6+1/12+1/20+1/30+1/42+...+1/110
Tính : A = 1/6 + 1/12 + 1/20 + 1/30 + 1/42 +...+1/90 + 1/110
\(A=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{10}-\frac{1}{11}=\frac{1}{2}-\frac{1}{11}=\frac{9}{22}\)
=1/2.3+1/3.4+1/4.5+......+1/10.11
=1-1/2+1/2-1/3+.....,+1/10-1/11
=1-1/11
=10/11
Tick
Tính
a) 9/110-1/90-1/72-1/56-1/42-1/30-1/20-1/12-1/6-1/2
\(=\frac{9}{10.11}-\frac{1}{9.10}-\frac{1}{8.9}-\frac{1}{7.8}-\frac{1}{6.7}-\frac{1}{5.6}-\frac{1}{4.5}-\frac{1}{3.4}-\frac{1}{2.3}-\frac{1}{1.2}\)
\(=\frac{9}{10.11}-\frac{10-9}{9.10}-\frac{9-8}{8.9}-...-\frac{2-1}{1.2}\)
\(=\frac{9}{10.11}-\frac{10}{9.10}+\frac{9}{9.10}-...-\frac{2}{1.2}+\frac{1}{1.2}\)
\(=\frac{9}{10.11}-\frac{1}{9}+\frac{1}{10}-\frac{1}{8}+\frac{1}{9}-\frac{1}{7}+\frac{1}{8}-...-\frac{1}{2}+\frac{1}{3}-1+\frac{1}{2}\)
\(=\frac{9}{10.11}+\frac{1}{10}-1\)
\(=-\frac{9}{11}\)
tính nhanh : B = 1/2 + 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + .... + 1/110
B = 1/2 + 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + ... + 1/110
B = 1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 + 1/5.6 + 1/6.7 + .... + 1/10.110
B = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7 + ... + 1/10 - 1/11
B = 1 - 1/11
B = 10/11
B = 1/2 + 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + .... + 1/110
=1/1x2 + 1/2x3 + 1/ 3x4 + 1/4x5 + 1/5 x6 + 1/ 6x 7 +.....+ 1/10 x11
=1-1/2 + 1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7 +......+ 1/10 - 1/11
= 1 + (1/2-1/2)+(1/3-1/3)+(1/4-1/4)+(1/5-1/5)+(1/6-1/6)+.....+(1/10-1/10)-1/11
= 1- 1/11=10/11
Vậy B = 1/2 + 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + .... + 1/110 = 10/11
cho mình hoi : 1/2 +1/6 +1/12 +1/30 +.....+1/110
cảm ơn nhé
A=1/6+1/12+1/20+1/30+1/42+11/110
1 / 12 + 1 / 20 + 1 / 30 + 1 / 42 + 1 / 56 + 1 / 72 + 1 / 90 + 1 / 110 + 1 / 132 =
(2 310 * 1) / (2 310 * 12) + (1 386 * 1) / (1 386 * 20) + (924 * 1) / (924 * 30) + (660 * 1) / (660 * 42) + (495 * 1) / (495 * 56) + (385 * 1) / (385 * 72) + (308 * 1) / (308 * 90) + (252 * 1) / (252 * 110) + (210 * 1) / (210 * 132) =
2 310 / 27 720 + 1 386 / 27 720 + 924 / 27 720 + 660 / 27 720 + 495 / 27 720 + 385 / 27 720 + 308 / 27 720 + 252 / 27 720 + 210 / 27 720 =
( 2 310 + 1 386 + 924 + 660 + 495 + 385 + 308 + 252 + 210 ) / 27 720 = 6 930 / 27 720
Đề thiếu chắc mk làm máy bài này rồi !
A=\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{11}{110}\)
\(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{11}{110}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}+\frac{11}{110}\)
\(A=1-\frac{1}{7}+\frac{11}{110}\)
\(A=\frac{6}{7}+\frac{11}{110}\)
\(A=\frac{67}{70}\)
A = 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + 1/56 + 1/72 + 1/90 + 1/110=?
\(A=\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{10\cdot11}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}=\left(\frac{1}{2}-\frac{1}{11}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+...+\left(\frac{1}{10}-\frac{1}{10}\right)\)\(=\left(\frac{1}{2}-\frac{1}{11}\right)+0+...+0=\frac{11}{22}-\frac{2}{22}=\frac{9}{22}\)
=1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8+1/8.9+1/9.10+1/10.11 =1-10/11=9/22 ;minh lanm dung nhe ;nho **** cho minh nhe
A = 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + 1/56 + 1/72 + 1/90 + 1/110=?
\(A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}\)
\(=\frac{1}{2}-\frac{1}{11}\)
\(=\frac{9}{22}\)
\(A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}\)
\(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}\)
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)
\(A=\left(\frac{1}{2}-\frac{1}{11}\right)+0+...+0\)
\(A=\frac{11}{22}-\frac{2}{22}\)
\(A=\frac{9}{22}\)
\(\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}+\dfrac{1}{110}\)
\(=\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}+\dfrac{1}{10.11}\)
\(=\dfrac{1}{2}-\dfrac{1}{11}\)
\(=\dfrac{9}{22}\)
Tính:
B = 1/6 + 1/12 + 1/20 + 1/30 + 1/ 42 + .....+1/90 + 1/110
B = 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + ... + 1/90 + 1/110
B = 1/2 x 3 + 1/3 x 4 + 1/4 x 5 + 1/5 x 6 + 1/6 x 7 + ... + 1/19 x 10 + 1/10 x 11
B = 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7 + ... + 1/19 - 1/10 + 1/10 - 1/11
B = 1/2 - 1/11
B = 9/22
\(B=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{90}+\frac{1}{110}\)
\(B=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}+\frac{1}{10.11}\)
\(B=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)
\(B=\frac{1}{2}-\frac{1}{11}=\frac{9}{22}\)
Vậy B=9/22
\(\text{Ta có : }\) \(B=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{10.11}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{10}-\frac{1}{11}\)
\(=\frac{1}{2}-\frac{1}{11}\)
\(=\frac{9}{22}\)
1/6+1/12+1/20+1/30+1/42+...+1/90+1/110
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{90}+\frac{1}{110}=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{9.10}+\frac{1}{10.11}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)\(=\frac{1}{2}-\frac{1}{11}=\frac{9}{22}\)
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}+\frac{1}{110}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{9.10}+\frac{1}{10.11}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-...+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)
\(=\frac{1}{2}-\frac{1}{11}=\frac{9}{22}\)
1/6+1/12+1/20+1/30+1/42+...+1/90+1/110
Đặt A = \(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{90}+\frac{1}{110}\)
A=\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{9.10}+\frac{1}{10.11}\)
A=\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)
A=\(\frac{1}{2}-\frac{1}{11}\)
A=\(\frac{9}{22}\)
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+.......+\frac{1}{90}+\frac{1}{110}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...........+\frac{1}{9.10}+\frac{1}{10.11}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...........+\frac{1}{10}-\frac{1}{11}\)
\(=\frac{1}{2}-\frac{1}{11}=\frac{9}{22}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\)
\(=\frac{1}{2}-\frac{1}{11}\)
\(=\frac{9}{22}\)