Tìm số tự nhiên n để 2.n+1 và 7.n+2 là hai số nguyên tố cùng nhau.
Tìm số tự nhiên n để 2.n+1 và 7.n+2 là hai số nguyên tố cùng nhau.
Gọi d là ước nguyên tố chung của 2.n + 1 và 7.n + 2
\(\Rightarrow\begin{cases}2.n+1⋮d\\7.n+2⋮d\end{cases}\)\(\Rightarrow\begin{cases}7.\left(2n+1\right)⋮d\\2.\left(7.n+2\right)⋮d\end{cases}\)\(\Rightarrow\begin{cases}14.n+7⋮d\\14.n+4⋮d\end{cases}\)
\(\Rightarrow\left(14.n+7\right)-\left(14.n+4\right)⋮d\)
\(\Rightarrow3⋮d\)
Mà d nguyên tố => d = 3
\(\Rightarrow\begin{cases}2.n+1⋮3\\7.n+2⋮3\end{cases}\)\(\Rightarrow\begin{cases}2.n+1-3⋮3\\7.n+2-9⋮3\end{cases}\)\(\Rightarrow\begin{cases}2.n-2⋮3\\7.n-7⋮3\end{cases}\)\(\Rightarrow\begin{cases}2.\left(n-1\right)⋮3\\7.\left(n-1\right)⋮3\end{cases}\)
Mà (2;3)=1; (7;3)=1 => \(n-1⋮3\)
=> n = 3.k + 1 (k ϵ N)
Vậy với \(n\ne3.k+1\left(k\in N\right)\) thì 2.n + 1 và 7.n + 2 là 2 số nguyên tố cùng nhau
1.Tìm số tự nhiên n để:
a, 2n+1 và 7n+2 là 2 số nguyên tố cùng nhau.
b,9n+24 và 3n+4 là 2 số nguyên tố cùng nhau.
2.Chứng minh rằng 2n+1 và 3n+1 (n là số tự nhiên) là 2 số nguyên tố cùng nhau.
\(Taco::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\)
\(GỌi:ƯCLN\left(2n+1;7n+2\right)=d\Rightarrow7\left(2n+1\right)-2\left(7n+2\right)⋮d\Rightarrow3⋮d\)
Để 2n+1 và 7n+2 nguyên tố cùng nhau thì: 2n+1 hoặc 7n+2 ko chia hết cho 3
Giả sử: 2n+1 chia hết cho 3
=> 2n+1-3 chia hết cho 3
=> 2n-2 chia hết cho 3
=> 2(n-1) chia hết cho 3=> n-1 chia hết cho 3
Giả sử: 7n+2 chia hết cho 3
=> 7n+2-9 chia hết cho 3
=>.........
Vậy với n khác 3k+1;3k+2 thì thỏa mãn
tìm số tự nhiên n để 2n+1 và 7n+2 là hai số nguyên tố cùng nhau
Để 2n+1 và 7n+2 là hai số nguyên tố cùng nhau
<=> ƯCLN(2n+1;7n+2) = 1
<=> 7.(2n+1)-2.(7n+2) chia hết cho 1
<=> 14n+7-14n-4 chia hết cho 1
<=> 3 chia hết cho 1
Vậy n = 3 (thỏa mãn \(n\in N\) )
mik thấy câu rả lời này nhiều lắm,chắc các bn copy của nhau chớ gì.mik cần câu trả lời tự làm của các bn nhưng phải chi tiết ,rõ ràng và chính xác
Gọi \(\left(2n+1;7n+2\right)=d\)
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\7n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}14n+7⋮d\\14n+4⋮d\end{cases}\Rightarrow}\left(14n+7\right)-\left(14n+4\right)⋮d}\)
\(\Rightarrow3⋮d\Rightarrow d\in\left\{1;3\right\}\)
\(d=3\Rightarrow2n+1⋮3\Rightarrow4n+2⋮3\Rightarrow3n+n+2⋮3\)
\(\Rightarrow n+2⋮3\Rightarrow n=3k-2\left(k\inℕ^∗\right)\)
=> d=3 thì rút gọn được
\(\Rightarrow n#3k-2\Rightarrow\)tối giản
Tìm số tự nhiên n để: 2n+1 và 7n+2 là hai số nguyên tố cùng nhau
Tìm số tự nhiên n để 2n+1 và 7n+2 là hai số nguyên tố cùng nhau.
Để 2n + 1 và 7n + 2 nguyên tố cùng nhau
<=> ƯCLN(2n + 1; 7n + 2) = 1
<=> 7.(2n + 1) - 2.(7n + 2) chia hết cho 1
<=> 14n + 7 - 14n + 4 chia hết cho 1
<=> 3 chia hết cho 1
Vậy n = 3
đề 1 chứng minh rằng với mọi số tự nhiên n ,các số sau là số nguyên tố cùng nhau
a/ 7n+10 và 5n+7
b/ 2n+ và 4n+8
đề 2 chứng minh rằng có vô số tự nhiên n để n+15 và n+72 là hai số nguyên tố cùng nhau
Đề 3 số tự nhiên n có 54 ước , Chứng minh rằng tích các ước của n bằng n^27
Đề 4 tìm số tự nhiên khác 0 nhỏ hơn 60 có nhiều ước nhất
đề 1 chứng minh rằng với mọi số tự nhiên n ,các số sau là số nguyên tố cùng nhau
a/ 7n+10 và 5n+7
b/ 2n+ và 4n+8
đề 2 chứng minh rằng có vô số tự nhiên n để n+15 và n+72 là hai số nguyên tố cùng nhau
Đề 3 số tự nhiên n có 54 ước , Chứng minh rằng tích các ước của n bằng n^27
Đề 4 tìm số tự nhiên khác 0 nhỏ hơn 60 có nhiều ước nhất
Bài 8: Tìm số tự nhiên a lớn nhất biết rằng 428 và 708 chia cho 9 đều có số dư là 8
Bài 9: Tìm số tự nhiên n để hai số sau nguyên tố cùng nhau:
a) n +2 và n+ 3 ;
b) 2 n+1 và 9n+4
giúp tui i mn oiiiiiiiiiiiiiiiiiiiiiiiiiiii
Bài 1. Tìm số tự nhiên a nhỏ nhất để a : 7 dư 4; a : 9 dư 5 và a : 15 dư 8.
Bài 2. a) Tìm số tự nhiên n để 16 – 3n là ước của 2n + 1.
b) Tìm số tự nhiên n để n2 + 6n là số nguyên tố.
Bài 3. a) Tìm số nguyên tố p sao cho p + 2; p + 6; p + 8; p + 12; p + 14 cũng là số nguyên tố
b) Tìm số tự nhiên n để các số sau nguyên tố cùng nhau: 4n – 3 và 6n + 1