tìm x và y thoả mãn \(|2x-2011|+\left(3y+2012\right)^{2012}=0\)
Tìm giá trị x, y thỏa mãn: \(^{\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}=0}\)
Vì \(\left|2x-27\right|\ge0\Rightarrow\left|2x-27\right|^{2011}\ge0\); \(\left(3y+10\right)^{2012}\ge0\)
=>\(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}\ge0\)
Dấu "=" xảy ra khi \(\left|2x-27\right|^{2011}=\left(3y+10\right)^{2012}=0\Leftrightarrow\hept{\begin{cases}\left|2x-27\right|=0\\\left(3y+10\right)^{2012}=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x-27=0\\3y+10=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{27}{2}\\y=-\frac{10}{3}\end{cases}}\)
tìm x y thỏa mãn : /2x-2011/ + (3y +2012)^2012 =0
\(\left|2x-2011\right|+\left(3y+2012\right)^{2012}=0\)
Vì \(\left|2x-2011\right|\ge0,\left(3y+2012\right)^{2012}\ge0\)
\(\Rightarrow\left|2x-2011\right|+\left(3y+2012\right)^{2012}\ge0\)
Mà \(\left|2x-2011\right|+\left(3y+2012\right)^{2012}=0\)
\(\Rightarrow\left\{{}\begin{matrix}2x-2011=0\\3y+2012=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{2011}{2}\\y=-\dfrac{2012}{3}\end{matrix}\right.\)
Tìm các giá trị của x,y thỏa mãn:\(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}=0\)
HELP ME !!!!!!!!! Tớ đang cần sự giúp đỡ.
Tìm các giá trị của x,y thỏa mãn:\(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}=0\)
HELP ME !!!!!!!!! Tớ đang cần sự giúp đỡ.
Tìm giá trị thỏa mãn :\(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}=0\)
Tìm x ; y thỏa mãn
\(\left|2x-4\right|^{2011}+\left(y+2013\right)^{2012}=0\)
Do \(\hept{\begin{cases}\left|2x-4\right|^{2011}\ge0\\\left(y+2013\right)^{2012}\ge0\end{cases}}\) nên để \(\left|2x-4\right|^{2011}+\left(y+2013\right)^{2012}=0\)thì :
\(\hept{\begin{cases}\left|2x-4\right|^{2011}=0\\\left(y+2013\right)^{2012}=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x-4=0\\y+2013=0\end{cases}\Leftrightarrow}\hept{\begin{cases}2x=4\\y=-2013\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=-2013\end{cases}}}\)
Vậy x = 2 ; y = -2013
Có /2x-4/^2011 luôn >=0 với mọi x
(y+2013)^2012 >= 0 với mọi y
Mà tổng lại =0
=> ''='' xảy ra <=> 2x-4=0 và y+2013=0
<=> x=2 và y=-2013.
Vậy x=2 và y=-2013.
Ta có : \(\left|2x-4\right|^{2011}\ge0\forall x\)
\(\left(y+2013\right)^{2012}\ge0\forall y\)
Khi \(\hept{\begin{cases}2x-4=0\\y+2014=0\end{cases}\Rightarrow\hept{\begin{cases}2x=4\\y=2014\end{cases}\Rightarrow}\hept{\begin{cases}x=2\\y=2014\end{cases}}}\)
Vậy ............
Tìm các giá trị của x, y thỏa mãn: |2x - 27|2011 + (3y + 10)2012 = 0
Vì \(\left\{{}\begin{matrix}\left|2x-27\right|^{2011}\text{≥0,∀x}\\\left(3y+10\right)^{2012}\text{≥0,∀y}\end{matrix}\right.\)
⇒ \(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}\text{≥0,∀x},y\)
Dấu "=" ⇔ \(\left\{{}\begin{matrix}2x-27=0\\3y+10=0\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x=\dfrac{27}{2}\\y=-\dfrac{10}{3}\end{matrix}\right.\)
Vậy ...
Ta có \(\hept{\begin{cases}\left|2x-27\right|^{2011}\ge0\forall x\\\left(3y+10\right)^{2022}\ge0\forall y\end{cases}}\Rightarrow\left|2x-27\right|^{2011}+\left(3y+10\right)^{2022}\ge0\forall x;y\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x-27=0\\3y+10=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{27}{2}\\y=-\frac{10}{3}\end{cases}}\)
Vậy x = 27/2 ; y = -10/3 là giá trị cần tìm
ta có |2x-27| > hoặc = 0=> |2x-27|^2011> hoặc = 0
(3y+10)^2012> hoặc 0 mà |2x-27|^2011+(3y+10)^2012=0
=>2x-27=0 hoặc 3y+10=0=>2x=27 hoặc 3y=-10
=>x=13,5 hoặc x=-10/3
vậy .............................
\(\left|2x+27\right|^{2011}+\left(3y+10\right)^{2012}=0\)
\(\hept{\begin{cases}\left|2x-27\right|^{2011}\ge0\forall x\\\left(3y+10\right)^{2012}\ge0\forall y\end{cases}}\Rightarrow\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}\ge0\forall x;y\)
Dấu ''='' xảy ra \(x=\frac{27}{2};y=-\frac{10}{3}\)
cho 3 số x,y,z thỏa mãn đồng thời
\(3x-2y-2\sqrt{y+2012}+1=0\)
\(3y-2z-2\sqrt{z-2013}+1=0\)
\(3z-2x-2\sqrt{x-2}-2=0\)
tính giá trị của biểu thức P=\(\left(x-4\right)^{2011}+\left(y+2012\right)^{2012}+\left(z-2013\right)^{2013}\)
- Bạn làm được bài này chưa bạn?
đặt \(\hept{\begin{cases}A=3x-2y-2\sqrt{y+2012}+1=0\\B=3y-2z-.....\\C=3z-2x.....\end{cases}}.\)
vì a=b=c=0
Suy ra A+B+C=0
A+B+c= \(\left(x\right)+\left(y\right)+\left(z\right)-2\sqrt{y+2012}-2\sqrt{z-2013}-2\sqrt{x-2}\) " rút gọn làm tắt "
đến đây ta thêm 3-3 , 2012-2012 , 2013-2013 , 2-2 vào biểu thức rồi dùng hằng đẳng thức ta được
\(\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y+2012}-1\right)^2+\left(\sqrt{z-2013}-1\right)^2+2013-2012+2-3=0\)
\(\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y+2012}-1\right)^2+\left(\sqrt{z-2013}-1\right)^2=0\) rút gọn
\(\hept{\begin{cases}\sqrt{x-2}=1\\\sqrt{y+2012}=1\\\sqrt{z-2013}=1\end{cases}}\)
thay vào P ta được
\(P=\left(3-4\right)^{2011}+\left(-2011+2012\right)^{2012}+\left(2014-2013\right)^{2013}\)
\(P=-1+1+1=1\)
Tìm các giá trị của x,y thỏa mãn:\(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}=0\)
Giúp tớ với các cậu ơi. Năn nỉ đó, mai tớ phải nộp cho thầy rồi.