cho tam giac ABC vuong tai A,B=50 do . Ke AH vuong goc BC(h thuoc BC). Ke HE vuong goc voi AC(E thuoc AC)
a) chung minh rang AB//HE
b)tinh so do cac goc AHE ; BAH
cho tam giac can ABC co AB=AC=5 cm, BC=8 cm . Ke AH vuong goc voi BC(h thuoc BC)
a) Chung minh : HB =HC va goc CAH= goc BAH; b) Tinh do dai AH
c) Ke HD vuong goc voi AB ( D thuoc AB), ke HE vuong goc voi AC(E thuoc AC). Chung minh : DE//BC
a) Xét 2 tam giác vuông AHB và tam giác AHC có:
AB = AC (gt)
AH là cạnh chung
=> tam giác AHB = tam giác AHC (cạnh huyền - cạnh góc vuông)
=>HB = HC (2 cạnh tương ứng)
=> góc A1= góc A2 (2 góc tương ứng)
b) Ta có : BC = HB + HC
mà HB = HC (cmt)
BC = 8 (cm)
=> HB = HC = BC/2 = 8/2= 4 (cm)
Xét tam giác AHB vuông tại H áp dugj định lí Pitago có:
AB^2 = AH^2 + HB^2
hay 5^2 = AH^2 + 4^2
=> AH = 5^2 - 4^2 =25 - 16= 9
=> AH = căn bậc 2 của 9 = 3 (cm)
c)Xét 2 tam giác vuông BHD và tam giác CHE có:
HB = HC (cmt)
Góc B = góc C ( vì tam giác ABC cân tại A)
=> tam giác BHD = tam giác CHE (cạnh huyền - góc nhọn)
=> BD= CE (2 cạnh tương ứng)
Xét 2 tam giác ADI và tam giác AEI có:
góc A1 = góc A2 (cmt)
AI là cạnh chung
AD =AE ( vì AB = AC; BD = CE)
=> tam giác ADI = tam giác AEI (c-g-c)
=> góc I1 = góc I2 (2 góc tương ứng)
mà góc I1 + góc I2 = 180 độ
=> góc I1 = góc I2 = 180/ 2= 90 (độ)
=> AI vuông góc với DE
=> AH cũng vuông góc với DE
mặt khác: AH lại vuông góc với BC
=> DE // BC (đpcm)
Cho tam giac ABC can tai A ke AH vung goc voi BC (H thuoc BC )
a, Chung minh AH la tia phan giac cua goc BAC
b, Ke HD vuong goc voi AB ( D thuoc AB) , HE vuong goc voi AC ( E thuoc AC). Chung minh tam giac HDE can
c, Neu cho AB = 29 cm , AH = 20 cm .Tinh do dai BC
d,Chung minh BC//DE
e, Neu cho goc BAC =120 do thi tam giac HDE tro thanh tam giac gi ? Vi sao
cho tam giac ABC can tai A; AB=AC=5cm, BC=6cm. ke AH vuong goc voi BC
chung minh rang: HB=HC; BAH=CAH
tinh do dai AH
ke HD vuong goc voi AB; HE vuong goc voi AC. chung minh rang tam giac HDE la tam giac can
Hình bạn tự vẽ nhé ! ( Bạn thay các chữ cái bằng kí tự nhé !)
a) Do AH vuông góc với BC nên:
Góc AHB= Góc AHC=90 độ
Ta có: Góc BAH= 90 độ- góc B(1)
Góc CAH=90 độ- góc C(2)
Lại dó: Góc B=Góc C( Do tam giác ABC cân tại A)(3)
Kết hợp (1), (2), (3), ta suy ra: Góc BAH= Góc CAH
Xét tam giác ABH và tam giác ACH, có:
Góc BAH= Góc CAH( CM trên)
Chung AH
Góc AHB=Góc AHC( Đều bằng 90 độ)
=> Tam giác ABH=Tam giác ACH( G-c-g)
Khi đó: HB=HC( Cặp cạnh tương ứng)
-------> ĐPCM
cho tam giac abc can tai a( ab= ac). ke ah vuong goc ba ( h thuoc bc)
a chung minh am giac abh= am giac ach
b chung minh hb=hc va goc bah = goc cah
c ke hd vuong goc ab ( d thuoc ab), he vuong goc ac( e thuoc ac) . chung minh tam giac ade can
TRÔNG MÌNH VẬY THÔI NHƯNG LÀ FAN RUỘT CỦA SẾP TÙNG ĐẤY !
SKY ZÔ KẾT BẠN NHA !!!!!!!!!!!
VÌ SẾP TÙNG MUÔN NĂM !!!!!!!
Chỗ câu hỏi của người ta cmt gì liên quan quá vậy @SN ?
a) Xét \(\Delta ABH\)và \(\Delta ACH\)có:
\(AH\): chung
\(\widehat{AHB}=\widehat{AHC}=90\)độ (gt)
\(AB=AC\left(gt\right)\)
\(\Rightarrow\Delta ABH=\Delta ACH\left(c.g.c\right)\)
b) Chứng minh câu a \(\Rightarrow HB=HC\)(hai cạnh tương ứng)
\(\Rightarrow\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng)
c) Xét \(\Delta ADH\)và \(\Delta AEH\)có:
\(\widehat{BAH}=\widehat{CAH}\left(cmt\right)\)
\(AH\): chung
\(\widehat{ADH}=\widehat{AEH}=90\)độ (gt)
\(\Rightarrow\Delta ADH=\Delta AEH\left(g.c.g\right)\)
\(\Rightarrow DA=EA\)(hai cạnh tương ứng)
\(\Rightarrow\Delta ADE\)cân tại \(A\)
cho tam giac ABC can co AB = AC = 5cm ; BC = 8cm . Ke AB vuong goc voi BC tai H
a, chung minh HB = HC va gocBAH = gocCAH
b, tinh do dai AH
c, ke HD vuong goc voi AB tai D. HE vuong goc voi AC tai E
chung minh tam giac HDE la tam giac can
cho tam giac ABC vuong tai A co duong cao AH,tu H ta ke HD vuong goc voi AB(D thuoc AB)va HE vuong goc voi AC(E thuoc AC).biet AB bang 6cm,AC bang 8cm.
1.tinh BC va AH
2.tinh goc C
3.chung minh he thuc AB*4/AC*4 bang BD.AB/CE.AC
cho tam giac ABC can tai A, KẺ AH vuong goc BC(H thuoc BC)
a, Chung minh goc BAH= CAH
b, cho AH=3 cm , BC= 8cm.tinh do dai AC
c, ke HE vuong goc AB, HD vuong goc AC. CM AE=AD
d, chung minh ED//BC
b,Từ a: tam giác BHC =tam giác CHA => BH=HC=8/2=4
Áp dụng địnhlí pytago vào tam giác vuông AHC => AC=5
c, Xét tam giác AHE và tam giác AHD =>tam giác AHE=tam giác AHD (gcg)
=>AE=AD
d,AE=AD => tam giác AED cân tại A => góc AED=(180-góc A)/2
tam giác ABC cân tại a =>góc ABC=(180 -góc A )/2
=>gócAED= gócABC=> ED //BC (ĐV)
a, tam giacs abc cân tại A =>AB=AC
=> tam giác BHA=tam giác CHA (cạnh huyền-cạnh góc vuông)
=> góc BAH=góc CAH
cau d ban lam ro ra hon duoc ko
minh ko hieu
Cho tam giac ABC vuong tai A duong cao AH ke HD vuong goc voi AB,HE vuong goc voi AC [ D thuoc AB , E thuoc ac]
CHUNG MINH RANG :a, goc C = goc ADE
b, Goi M la trung diem cua BC . Chung minh AM vuong goc voi DE
cho tam giac abc vuong tai A (AB<AC). Ke duong cao AH.
A) TAM GIAC AHB dong dang voi tam giac CAB
B) Tu H ke HE vuong goc voi AB(E THUOC AB). Ke HF vuong goc voi AC ( F thuoc AC) CM AE.AB=AF.AC
C) GOI M LA GIAO DIEM CUA EF VA BC. CM GOC MCE = GOC MFB
a: Xet ΔAHB vuôg tại H và ΔCAB vuông tại A có
góc B chung
=>ΔAHB đồng dạng với ΔCAB
b: Xét ΔAHB vuông tại H có HE là đường cao
nen AE*AB=AH^2
Xét ΔAHC vuông tạiH có HF là đường cao
nên AF*AC=AH^2
=>AE*AB=AF*AC
c: góc MEB=góc AEF=góc AHF=góc MCF
Xét ΔMEB và ΔMCF có
góc MEB=góc MCF
góc M chung
=>ΔMEB đồng dạng với ΔMCF
=>ME/MC=MB/MF
=>ME/MB=MC/MF
=>ΔMEC đồng dạng với ΔMBF
=>góc MCE=góc MFB