Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đỗ Đức Hà
Xem chi tiết
Nguyễn Hoàng Minh
22 tháng 11 2021 lúc 10:32

Vì \(8\left(x-2009\right)^2\) chẵn nên \(25-y^2\) chẵn

Mà \(25\) lẻ nên \(y^2\) lẻ

Và \(25-y^2=8\left(x-2009\right)^2\ge0\Leftrightarrow y^2\le25\)

\(\Leftrightarrow y^2\in\left\{1;9;25\right\}\Leftrightarrow y\in\left\{1;3;5\right\}\left(y\in N\right)\)

\(\forall y=1\Leftrightarrow8\left(x-2009\right)^2=24\Leftrightarrow\left(x-2009\right)^2=3\left(loại\right)\\ \forall y=3\Leftrightarrow8\left(x-2009\right)^2=16\Leftrightarrow\left(x-2009\right)^2=2\left(loại\right)\\ \forall y=5\Leftrightarrow8\left(x-2009\right)^2=0\Leftrightarrow\left(x-2009\right)^2=0\Leftrightarrow x=2009\left(nhận\right)\)

Vậy \(\left(x;y\right)=\left(2009;5\right)\)

Haruno Sakura
Xem chi tiết
Haruno Sakura
4 tháng 1 2016 lúc 13:46

các bạn xóa máy câu trả lời đó đi 

Haruno Sakura
7 tháng 1 2016 lúc 14:26

Nguyễn Ngọc Quý ơi giúp mình bài này với

ミ★Zero ❄ ( Hoàng Nhật )
22 tháng 4 2021 lúc 20:33

\(25-y^2=8.\left(x-2009\right)^2\)

Đặt \(t=x-2009\left(t\in Z,y\in Z\right)\)

\(\Rightarrow25-y^2=8t^2\Rightarrow y^2=25-8t^2\Rightarrow y^2\le25\)

TH1 : \(y^2=0\Rightarrow t^2=\frac{25}{8}\left(lọai\right)\)

TH2 : \(y^2=4\Rightarrow t^2=\frac{21}{8}\left(lọai\right)\)

TH3 : \(y^2=9\Rightarrow t^2=2\left(lọai\right)\)

TH4 :\(y^2=16\Rightarrow t^2=\frac{9}{8}\left(lọai\right)\)

TH5 : \(y^2=25\Rightarrow t^2=0\Rightarrow x=\pm5;x=2009\)

Vậy \(\left(x;y\right)-\left(2009;\pm5\right)\)

Khách vãng lai đã xóa
KaKaShi_SaSuKe
Xem chi tiết
Đỗ Đức Hà
Xem chi tiết
Trần Phương Uyên
Xem chi tiết
Hoàng Thị Cẩm Vân
8 tháng 1 2016 lúc 21:37

mh cx có bài thầy giao y hệt. Khi nào thầy chữa mh gửi cho

Thiều Thị Nhung
Xem chi tiết
giang ho dai ca
10 tháng 5 2015 lúc 14:12

Ta có 8(x-2009)^2 = 25- y^2
8(x-2009)^2 + y^2 =25 (*) 
Vì y^2 \(\ge\) 0 nên (x-2009)^2\(\le\frac{25}{8}\)  , suy ra (x-2009)^2 = 0 hoặc (x-2009)^2 =1
Với (x -2009)^2 =1 thay vào (*) ta có y^2 = 17 (loại) 
Với (x- 2009)^2= 0 thay vào (*) ta có y^2 =25 suy ra y = 5 (do ) 
Từ đó tìm được (x=2009; y=5)

đúng cái nhé

Kaitoru
10 tháng 5 2015 lúc 14:18

hay                                                        

Trịnh Đức Dương
12 tháng 4 2016 lúc 21:21

câu hỏi hay đó,

mấy bạn trả lời dc cũng khá thông minh

Lê Nam Khánh
Xem chi tiết

hi k cho tui

Ta có: \(25-y^2=8\left(x-2009\right)^2\)

\(8\left(x-2009\right)^2\ge0\Rightarrow25-y^2\ge0\left(1\right)\)

\(8\left(x-2009\right)^2⋮8\Rightarrow25-y^2⋮8\left(2\right)\)

từ\(\left(1\right),\left(2\right)\Rightarrow y^2\in\left\{1;9;25\right\}\)

\(+,y^2=1\Rightarrow8\left(x-2009\right)^2=24\Rightarrow\left(x-2009\right)^2=3\left(ktm\right)\)

\(+,y^2=9\Rightarrow8\left(x-2009\right)^2=16\Rightarrow\left(x-2009\right)^2=2\left(ktm\right)\)

\(+,y^2=25\Rightarrow8\left(x-2009\right)^2=0\Rightarrow\left(x-2009\right)^2=0\Rightarrow x-2009=0\Rightarrow x=2009\)

Vậy\(x=2009;y=5\)hoặc\(-5\)

Quân
7 tháng 1 2019 lúc 20:58

Có \(8\cdot\left(x-2009\right)^2\ge0\forall x\)và \(8\left(x-2009\right)^2⋮8\)

Mà \(25-y^2=8\cdot\left(x-2009\right)^2\)

\(\Rightarrow\hept{\begin{cases}25-y^2\ge0\\25-y^2⋮8\end{cases}}\)

Mà \(25-y^2\le25\)

Nên: \(25-y^2\)thuộc { 0;8;16;24}

TH1: \(25-y^2=0\Rightarrow y=5\)( do y thuộc N )

\(\Rightarrow x=2009\)

TH2: \(25-y^2=8\Rightarrow y=\sqrt{17}\)

VÔ LÝ

TH3: \(25-y^2=16\Rightarrow y=3\)

\(\Rightarrow16=8\cdot\left(x-2009\right)^2\)

\(\Rightarrow2=\left(x-2009\right)^2\)

VÔ LÝ vì một số tự nhiên bình phương lên không thể bằng 2

TH4: \(25-y^2=24\Rightarrow y=1\)

\(\Rightarrow25-1=8\cdot\left(x-2009\right)^2=24\)

\(\Rightarrow\left(x-2009\right)^2=3\)

VÔ LÝ vì không có số tự nhiên nào bình phươn lên bằng 3.

VẬY \(\hept{\begin{cases}x=2009\\y=5\end{cases}}\)

Lê Thị Quỳnh Anh
Xem chi tiết
Nguyễn Thái Anh
Xem chi tiết
tôn thiện trường
Xem chi tiết