ƯCLN(2n+1;6n+5)
Tìm ƯCLN (2n; 2n+2)
Tìm ƯCLN (2n+1; 2n+3)
(giải đoàng hoàng giùm nhé!)
Bạn ơi mình giải nhé:
(2n;2n+2)
2n là số chẵn =>2n chia hết cho 2
2n+2 là số chẵn =>2n+2 chia hết cho 2
Vậy ƯCLN(2n;2n+2)=2
(2n+1;2n+3)
2n+1 là số lẻ.=>2n+1 chia hết cho 1
2n+3 là số lẻ=>2n+3 chia hết cho 1
[Vì 2n+1 và 2n+3 không thể chia hết cho cùng 1 số ngoại trừ 1 nên là ƯCLN(2n+1;2n+3)=1]
Vậy ƯCLN(2n+1;2n+3)=1
1. Chứng minh rằng
a) ƯCLN(n, n + 1) = 1
b) ƯCLN (2n + 1, 2n +3)= 1
c) ƯCLN(2n+5, 3n+7) = 1
Cho a + 5b 7. Chứng minh rằng 10a + b 7 (a,b )
giúp mk vớiiiiiiiiiii
nhớ giải ra ko lm tắt nhaaaaaaaaaaaaa
thanks very muck
\(1,\\ a,Gọi.ƯCLN\left(n,n+1\right)=d\\ \Rightarrow n⋮d;n+1⋮d\\ \Rightarrow n+1-n⋮d\\ \Rightarrow1⋮d\\ \Rightarrow d=1\)
Vậy \(ƯCLN\left(n,n+1\right)=1\)
a. Tìm ƯCLN(2n+2;2n); (n ∈ N*) .
b. Tìm ƯCLN(3n+2 ;2n+1) với n ∈ N
a, Gọi d là ƯCLN(2n+2;2n)
=> 2 n + 2 ⋮ d 2 n ⋮ d ⇒ 2 n + 2 - 2 n = 2 ⋮ d
Mà d là ƯCLN nên d là số lớn nhất và cũng là ước của 2.
Vậy d = 2
b, Gọi ƯCLN(3n+2 ;2n+1) = d
Ta có: 3 n + 2 ⋮ d 2 n + 1 ⋮ d ⇒ 2 3 n + 2 ⋮ d 3 2 n + 1 ⋮ d
=>[2(3n+2) – 3(2n+1)] = 1 ⋮ d
Vậy d = 1
1) Tìm ưcln(2n + 1,2n + 3)
2)Tìm ưcln(2n + 5,3n + 7)
1) Tìm ưcln(2n + 1 , 2n + 3)
Ta có: gọi ƯCLN(2n+1 , 2n+3) là d
=> 2n+1chia hết d ; 2n+3 chia hết d
=>(2n+3-2n+1) chia hết d
=> 2n+3 - 2n -1 chia hết d
=>2 chia hết cho d
=>ƯC(2n+1 ; 2n+3 ) = Ư(2)= {1;2}
vì 2n+3 và 2n+1 không chia hết cho d nên d=1
vậy ƯCLN(2n+1;2n+3)=1
2)Tìm ưcln(2n + 5,3n + 7)
gọi ƯCLN(2n+5 ; 3n+7) là d
=> 2n+5 chia hết cho d ; 3n+ 7 chia hết cho d
=>6n+15 chia hết cho d ; 6n+14 chia hết cho d
=>(6n+15-6n-14) chia hết cho d
=> 6n+15-6n-14 chia hết cho d
=> 1 chia hết cho d => d=1
vậy ƯCLN(2n+5;3n+7)= 1
CMR: ƯCLN (2n+1; 2n+3)=1
Đặt \(\left(2n+1;2n+3\right)=d\) (d lẻ)
Khi đó \(\left\{{}\begin{matrix}2n+1⋮d\\2n+3⋮d\end{matrix}\right.\)
\(\Rightarrow\left(2n+3\right)-\left(2n+1\right)⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d\in\left\{1;2\right\}\)
Do d lẻ \(\Rightarrow d=1\)
\(\Rightarrow\) đpcm
goij ucln (2n+1;2n+3)=d
=> 2n+1: hết d
2n+3: hết d
=> 2n+3-2n+1: hết d
2: hết d => de{1;2}
lập luận d là số lẻ
=> d=1
VẬY...
Câu 1 :
a ) Tìm ƯCLN : ( a : b ) = 8
b ) a + b = 24 ; a < b
Câu 2 :
a ) Tìm ƯCLN : ( n + 1 ; 2n + 1 )
b ) Tìm ƯCLN : ( 2n + 1 ; 2n + 3 )
giúp ml với mk đang cần gấp !!!!!!!!!
1. CHO N THUỘC N SAO. CHỨNG MINH
A, ƯCLN ( 2N + 2 ; 2N+ 3 ) = 1
B, ƯCLN ( 2N + 5 ; 3N + 7 ) = 1
C,ƯCLN ( 3N + 5 ; 6N + 9 ) = 1
GIÚP MÌNH VỚI MÌNH CẦN GẤP BẠN NÀO NHANH VÀ TRẢ LỜI ĐÚNG MÌNH CHO 1 TÍCH
A,
Từ đề bài ta có
\(2n+3;2n+2⋮d\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
suy ra d=1 suy ra đpcm
B nhân 3 vào số đầu tiên
nhâm 2 vào số thứ 2
rồi trừ đi được đpcm
C,
Nhân 2 vào số đầu tiên rồi trừ đi được đpcm
CMR ƯCLN (2n+1; 2n^2-1)=1
Gọi d la ƯCLN(2n+1,2n^2-1)ta có
2n+1 và 2n^2-1chia het cho d
2n^2+n-2n^2+1chia het cho d
n+1chia hết cho d
2(n+1)-2n+1chia het cho d
1chia hết cho d=>d€Ư(1)=1
Vậy ƯCLN(2n+1,2n^2-1)=1
Thêm dấu suy ra bạn nhé!
Bài 1:
a) Tìm ƯCLN (76 ; 1995)
b) Tìm ƯCLN (2n + 1 ; 3n + 1)
\(a,76=2^2\cdot19\\ 1995=3\cdot5\cdot7\cdot19\\ \RightarrowƯCLN\left(76,1995\right)=19\)
\(b,\) Gọi \(d=ƯCLN\left(2n+1,3n+1\right)\)
\(\Rightarrow2n+1⋮d;3n+1⋮d\\ \Rightarrow3\left(2n+1\right)-2\left(3n+1\right)⋮d\\ \Rightarrow1⋮d\\ \Rightarrow d=1\)
Vậy \(ƯCLN\left(2n+1,3n+1\right)=1\)
Bài 3 : chứng tỏ:
a) ƯCLN (n,n+1)=1 b) ƯCLN(n, 2n+1) =1
c) ƯCLN(3n+1, 4n+1) =1 d) ƯCLN( 2n +3, 3n+4) =1
a) Giả sử ƯCLN(n,n+1)=d (d\(\in\)N*)
Nên n chia hết cho d \(\Rightarrow\)n+1-n=1\(\Rightarrow\)1 chia hết cho d\(\Rightarrow\)d=1
n+1 chia hết cho d
Vậy ƯCLN(n,n+1)=1
b) Giả sử ƯCLN(n,2n+1)=d (d\(\in\)N*)
Nên n chia hết cho d
2n+1 chia hết cho d
Nên 2n chia hết cho d \(\Rightarrow\)2n+1-2n=1\(\Rightarrow\)1 chia hết cho d\(\Rightarrow\)d=1
2n+1 chia hết cho d
Vậy ƯCLN(n,2n+1)=1
c) Giả sử ƯCLN(3n+1,4n+1)=d (d\(\in\)N*)
Nên 3n+1 chia hết cho d
4n+1 chia hết cho d
Nên 4(3n+1) chia hết cho d
3(4n+1) chia hết cho d
Nên 12n+4 chia hết cho d \(\Rightarrow\)12n+4-(12n+3)=1\(\Rightarrow\)1 chia hết cho d\(\Rightarrow\)d=1
12n+3 chia hết cho d
Vậy ƯCLN(3n+1,4n+1)=1