Chứng minh rằng : A chia hết cho 5 , biết :
A = 99999999931999999 - 555555557199999997
1. a, Cho B = 3 + 3^3 + 3^5 +...+ 3^1991. Chứng minh rằng: B chia hết cho 3 ; B chia hết cho 41
b, Chứng minh rằng: (99^5 - 98^4 - 97^3 - 96^3) chia hết cho 2, cho 5.
c, A = 999993^1999 - 555557^1997. Chứng minh: A chia hết cho 5.
d, A = 8n + 111..1 ( n chữ số 1 ). Chứng minh: A chia hết cho 9.
e, Cho ( abc + deg ) chia hết cho 37. Chứng minh: abcd chia hết chio 37.
2. Tìm 2 số biết rằng tổng của chúng gấp 7 lần hiệu của chúng, còn tích của chúng gấp 192 lần hiệu của chúng.
3. Tìm số nhỏ hơn 100, biết rằng khi chia số đó cho 5 thì được dư là 3, chia cho 11 dư 5.
1)
a)\(B=3+3^3+3^5+3^7+.....+3^{1991}\)
\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)
Vì \(3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)chia hết cho 3 nên \(B⋮3\)
\(B=3+3^3+3^5+3^7+.....+3^{1991}\)
\(\Leftrightarrow B=\left(3+3^3+3^5+3^7\right)+.....+\left(3^{1988}+3^{1989}+3^{1990}+3^{1991}\right)\)
\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6\right)+.....+3^{1988}\left(1+3^2+3^4+3^6\right)\)
\(\Leftrightarrow B=3.820+.....+3^{1988}.820\)
\(\Leftrightarrow B=3.20.41+.....+3^{1988}.20.41\)
Vì \(3.20.41+.....+3^{1988}.20.41\) chia hết cho 41 nên \(B⋮41\)
Chứng minh rằng :
a/ Biết a+b chia hết cho 7.Chứng minh rằng aba chia hết cho 7
b/ Biết a+b+c chia hết cho 7.Chứng minh rằng nếu abc chia hết cho 7 thì b-c chia hết cho 7
a/
\(\overline{aba}=101.a+10b=98a+3a+7b+3b=\)
\(=\left(98a+7b\right)+3\left(a+b\right)\)
\(98a+7b⋮7;\left(a+b\right)⋮7\Rightarrow3\left(a+b\right)⋮7\)
\(\Rightarrow\overline{abc}=\left(98a+7b\right)+3\left(a+b\right)⋮7\)
b/ xem lại đề bài
Chứng minh rằng 3.a + 18.b chia hết cho 5, biết (a+b) chia hết cho 5)
Ta có:
3a + 18b = 3(a + 6b) = 3[(a + b) + 5b]
Mà a + b \(⋮\) 5 và 5b \(⋮\) 5
=> (a + b) + 5b \(⋮\) 5
=> 3[(a + b) + 5b] \(⋮\) 5
=> 3a + 18b \(⋮\) 5 (đpcm)
3a + 18b = 3(a + b) + 15b
Mà (a + b) chia hết cho 5 và 15b chia hết cho 6 nên 3a + 18b chia hết cho 5
1) Cho 2 số tự nhiên a và b, biết 2 chia cho 6 dư 2 và b chia cho 6 dư 3. . Chứng minh rằng ab chia hết cho 6.
2) Cho a và b là 2 sớ tự nhiên, biết a chia cho 5 dư 2 và b chia cho 5 dư 3 . Chứng minh rằng ab chia cho 5 dư 1.
3) Cho 2 số tự nhiên a và b, biết a chia cho 6 dư 3 và ab chia hết cho 6. . Hỏi b chia cho 6 có số dư là bao nhiêu? Chứng minh.
4) Chứng minh rằng: n (2n - 3) - 2n (n + 1) luôn chia hết cho 5 với n là số tự nhiên.
5) Chứng minh rằng với mọi số nguyên n biểu thức (n - 1) (n + 4) - (n - 4) (n + 1) luôn chia hết cho 6.
Cho a là số tự nhiênchia 6 dư 2 và b là số tự nhiên chia 6 dư 3. Chứng minh axb chia hết cho 6
chứng minh rằng a chia hết cho 5 biết a=b+ c và b+c chia hết cho 5
vì a=b=c nên a chỉ có thể bằng 0 hoặc 5 mà thôi vì b+c chia hết cho 5
Cho a,n thuộc N*, biết rằng an chia hết cho 5
chứng minh rằng (a+150 ) chia hết cho 25
ta có: a có thể bằng 5 vì a chia hết cho 5
5^n,ví dụ n là 2 thì bằng 25
5^n có thể chia hết cho 25
ta có 150 cũng chia hết cho25
vâỵ a+150 chia hết cho 25
a mũ n chia hết cho 5 => a = 5k ( k thuộc N* )
Do đó a mũ 2 + 150= ( 5k) tất cả mũ 2 + 25 . 6
= 25 . ( k+ 6) chia hết cho 25
Bài 1: Chứng minh rằng : 22 + n+2 chia hết cho 2 và không chia hết cho 5
Bài 2 : Cho a€ N* , n€ N* , biết a2 chia hết cho 5 . Chứng minh rằng : a2 +150 chia hết cho 25
Mình đang cần gấp mong các bạn giải nhanh giúp mình.
Cho số tự nhiên a và n, biết rằng an chia hết cho 5. Chứng minh rằng a2 + 150 chia hết cho 25.
Cho số tự nhiên a và n, biết rằng an chia hết cho 5. Chứng minh rằng a2 + 150 chia hết cho 25.