4 1/2 +1/2 : 5 1/2
a,1/3 .(x-2/5)=3/4 b, 7/3:(x-2/3)=4/5 c,1/3.(x-2/5)=4/5 d, 2/3.(x-1/2)-1/4.(x-2/5)=7/3 e,3/7 .(x-2/3)+1/2=5/4.(x-2) f,1/2.(x-3)+1/3.(x-4)+1/4.(x-5)=1/5 g,[2/3.(x-1/2)-4/5]:(x-1/3)=21/5 h, {x-[1/2.(x-3)+11/5]}:(x-1/2)=3/5 i,x.(x-2/5)-(x+2).x+11/4=4/3
a: =>x-2/5=3/4:1/3=3/4*3=9/4
=>x=9/4+2/5=45/20+8/20=53/20
b: =>x-2/3=7/3:4/5=7/3*5/4=35/12
=>x=35/12+2/3=43/12
c: 1/3(x-2/5)=4/5
=>x-2/5=4/5*3=12/5
=>x=12/5+2/5=14/5
d: =>2/3x-1/3-1/4x+1/10=7/3
=>5/12x-7/30=7/3
=>5/12x=7/3+7/30=77/30
=>x=77/30:5/12=154/25
e: \(\Leftrightarrow x\cdot\dfrac{3}{7}-\dfrac{2}{7}+\dfrac{1}{2}-\dfrac{5}{4}x+\dfrac{5}{2}=0\)
=>\(x\cdot\dfrac{-23}{28}=\dfrac{2}{7}-3=\dfrac{-19}{7}\)
=>x=19/7:23/28=76/23
f: =>1/2x-3/2+1/3x-4/3+1/4x-5/4=1/5
=>13/12x=1/5+3/2+4/3+5/4=257/60
=>x=257/65
i: =>x^2-2/5x-x^2-2x+11/4=4/3
=>-12/5x=4/3-11/4=-17/12
=>x=17/12:12/5=85/144
Tính Nhanh
a) ( 1/2 + 1/3 + 1/4 + 1/5 + 1/6 ) - ( 1/2 + 1/3 + 1/4 + 1/5 )
b) ( 2/3 + 2/4 + 2/5 + 2/6 + 2/7 ) - ( 2/4 + 2/5 + 2/6 + 2/7 + 28 )
a) = 1/2 - 1/2 + 1/3 -1/3 + 1/4 - 1/4 + 1/5 - 1/5 + 1/6
= 0 + 0 + 0 + 0 + 1/6
= 1/6
b) 2/3 + 2/4 - 2/4 + 2/5 - 2/5 + 2/6 - 2/6 + 2/7 - 2/7 + 28
= 2/3 + 28
= 86/3
[tick cho mik nha]
1. (1+1/2).(1+1/2^2).(1+1/2^3)....(1+1/2^100) < 3
2. 1/(5+1)+2/(5^2+1)+4/(5^4+1)+...+ 1024/(5^1024+1) <1/4
3. 3/(1!+2!+3!)+4/(2!+3!+4!)+...+100/(98!+99!+100!) <1/2
??????????????????????????????????????????????
Lần đầu post, mình quên mất chưa nêu câu hỏi. Nhờ các bạn chứng minh dùm 3 câu trên với, cám ơn nhiều ah!
1.\(\left(1+\frac{1}{2}\right)\left(1+\frac{1}{2^2}\right)\left(1+\frac{1}{2^3}\right)+...+\left(1+\frac{1}{2^{100}}\right)\)
Đặt \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\)
\(\Rightarrow2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)
\(\Rightarrow A=1-\frac{1}{2^{100}}\)
Thấy:\(\frac{1}{2^{100}}>0\Rightarrow1-\frac{1}{2^{100}}< 1\)
\(\Rightarrow A< 1\)
Ta có:\(\left(1+\frac{1}{2}\right)\left(1+\frac{1}{2^2}\right)\left(1+\frac{1}{2^3}\right)...\left(1+\frac{1}{2^{100}}\right)=A+100< 1+100=101\)
\(101>\left(1+\frac{1}{2}\right)\left(1+\frac{1}{2^2}\right)\left(1+\frac{1}{2^3}\right)...\left(1+\frac{1}{2^{100}}\right)\ge100\)
\(\Rightarrow\left(1+\frac{1}{2}\right)\left(1+\frac{1}{2^2}\right)\left(1+\frac{1}{2^3}\right)...\left(\frac{1}{2^{100}}\right)>\left(\frac{101}{100}\right)^{100}>3\)
*Cách khác:
\(\left(1+\frac{1}{2}\right)\left(1+\frac{1}{2^2}\right)\left(1+\frac{1}{2^3}\right)+...+\left(1+\frac{1}{2^{100}}\right)\)
\(=\frac{2+1}{2}.\frac{2^2+1}{2^2}....\frac{2^{100}+1}{2^{100}}\)
Ta thấy:
\(\frac{2+1}{2}>\frac{2^2+1}{2^2}>....>\frac{2^{100}+1}{2^{100}}\)
\(\Rightarrow\frac{2+1}{2}>\frac{2+1}{2}.\frac{2^2+1}{2^2}....\frac{2^{100}+1}{2^{100}}\)
Mà \(\frac{2+1}{2}< 3\)
\(\Rightarrow\frac{2+1}{2}.\frac{2^2+1}{2^2}....\frac{2^{100}+1}{2^{100}}< 3\)
\(\Rightarrow\left(1+\frac{1}{2}\right)\left(1+\frac{1}{2^2}\right)\left(1+\frac{1}{2^3}\right)+...+\left(1+\frac{1}{2^{100}}\right)< 3\)
1+1+1+1+1+1+1=?
2+2+2+2+2+2+2=?
3+3+3+3+3+3+3=?
4+4+4+4+4+4+4=?
5+5+5+5+5+5=?
bài 1:
1/4 + 2/3 2/7 + 2/3 2/5 + 1/3 2/3 + 1/2 1/3 + 3/5 4/5 + 1/3
1/8 + 3/4 1/36 + 5/12 1/3 + 1/6 + 1/18.
bài 2:
15/16 - 3/16 17/18 - 5/6 3/4 - 4/9 1/2 - 2/5 5/6 - 3/10 3-1/3
4/5 - 1/10 5/2 - 1 5/8 - 2/5.
Bài 1
a, Tính P=1+1/2(1+2)+1/3(1+2+3)+1/4(1+2+3+4)+....+1/2012(1+2+3+...+2012)
b,Tìm x thỏa mãn 4^5+4^5+4^5+4^5/3^5+3^5+3^5.6^5+6^5+6^5+6^5+6^5+6^5/2^5+2^5=2^x
Kho..................wa.....................troi.....................thi......................lanh.................ret.......................ai........................tich..........................ung.....................ho........................minh.....................cho....................do....................lanh
Kho..................wa.....................troi.....................thi......................lanh.................ret.......................ai........................tich..........................ung.....................ho........................minh.....................cho....................do....................lanh
>, < , = ?
5 – 2 … 4 | 5 – 4 … 2 | 4 + 1 … 5 |
5 – 2 …. 3 | 5 – 3 … 1 | 5 – 1 … 5 |
5 – 2 … 2 | 5 – 1 …. 4 | 5 – 4 … 0 |
Lời giải chi tiết:
5 – 2 < 4 | 5 – 4 < 2 | 4 + 1 = 5 |
5 – 2 = 3 | 5 – 3 > 1 | 5 – 1 < 5 |
5 – 2 > 2 | 5 – 1 = 4 | 5 – 4 > 0 |
5-2<4 5-4<2 4+1=5
5-2=3 5-3>1 5-1<5
5-2>2 5-1=4 5-4>0
>, <, = ?
4…5 | 1…4 | 2…3 | 1…1 |
2…2 | 5…2 | 2…4 | 5…1 |
3…1 | 3…3 | 2…5 | 3…5 |
Lời giải chi tiết:
4 < 5 | 1 < 4 | 2 < 3 | 1 = 1 |
2 = 2 | 5 > 2 | 2 < 4 | 5 > 1 |
3 > 1 | 3 = 3 | 2 < 5 | 3 < 5 |
B = 1 + 5 + 52 + 53 + ....... + 52008 + 52009
S = 1 + 2 + 5 + 14 + ....... + 3n-1 + 1/2 (với n thuộc Z)
A = 1 + 3/2^3 + 4/2^4 + 5/2^5 + ...... + 100/2^100
Q = 1 + 1/2*(1+2) + 1/3*(1+2+3) + 1/4*(1+2+3+4) + ...... + 1/20*(1+2+3+.....+20)
M = -4/1*5 - 4/5*9 - 4/9*13 - ....... - 4/(n+4)*n
Giúp mk với! Mk đang cần gấp lắm !!!!!
\(B=1+5+5^2+5^3+...+5^{2008}+5^{2009}\)
\(\Rightarrow 5B=5+5^2+5^3+5^4+...+5^{2009}+5^{2010}\)
Trừ theo vế:
\(5B-B=(5+5^2+5^3+5^4+...+5^{2009}+5^{2010})-(1+5+5^2+...+5^{2009})\)
\(4B=5^{2010}-1\)
\(B=\frac{5^{2010}-1}{4}\)
\(S=\frac{3^0+1}{2}+\frac{3^1+1}{2}+\frac{3^2+1}{2}+..+\frac{3^{n-1}+1}{2}\)
\(=\frac{3^0+3^1+3^2+...+3^{n-1}}{2}+\frac{\underbrace{1+1+...+1}_{n}}{2}\)
\(=\frac{3^0+3^1+3^2+..+3^{n-1}}{2}+\frac{n}{2}\)
Đặt \(X=3^0+3^1+3^2+..+3^{n-1}\)
\(\Rightarrow 3X=3^1+3^2+3^3+...+3^{n}\)
Trừ theo vế:
\(3X-X=3^n-3^0=3^n-1\)
\(\Rightarrow X=\frac{3^n-1}{2}\). Do đó \(S=\frac{3^n-1}{4}+\frac{n}{2}\)
\(A=1+\frac{3}{2^3}+\frac{4}{2^4}+\frac{5}{2^5}+...+\frac{100}{2^{100}}\)
\(\Rightarrow 2A=2+\frac{3}{2^2}+\frac{4}{2^3}+\frac{5}{2^4}+...+\frac{100}{2^{99}}\)
Trừ theo vế:
\(2A-A=1+\frac{3}{2^2}+\frac{4-3}{2^3}+\frac{5-4}{2^4}+\frac{6-5}{2^5}+...+\frac{100-99}{2^{99}}-\frac{100}{2^{100}}\)
\(\Leftrightarrow A=1+\frac{3}{4}-\frac{100}{2^{100}}+(\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}})\)
Đặt \(T=(\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}})\)
\(\Rightarrow 2T=\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{98}}\)
Trừ theo vế: \(2T-T=\frac{1}{2^2}-\frac{1}{2^{99}}\)
\(\Leftrightarrow T=\frac{1}{4}-\frac{1}{2^{99}}\)
Do đó: \(A=1+\frac{3}{4}-\frac{100}{2^{100}}+\frac{1}{4}-\frac{1}{2^{99}}=2-\frac{102}{2^{100}}\)
>, <, = ?
2 + 2 … 5 | 2 + 1 … 1 + 2 | 3 + 1 … 3 + 2 |
2 + 3 … 5 | 2 + 2 …1 + 2 | 3 + 1 … 1 + 3 |
5 + 0 … 5 | 2 + 0 …1 + 2 | 1 + 4 …. 4 + 1 |
Lời giải chi tiết:
2 + 2 < 5 | 2 + 1 = 1 + 2 | 3 + 1 < 3 + 2 |
2 + 3 = 5 | 2 + 2 > 1 + 2 | 3 + 1 = 1 + 3 |
5 + 0 = 5 | 2 + 0 < 1 + 2 | 1 + 4 = 4 + 1 |
2 + 2 < 5 2 + 1 = 1 + 2 3 + 1 < 3 + 2
2 + 3 = 5 2 + 2 > 1 + 2 3 + 1 = 1 + 3
5 + 0 = 5 2 + 0 < 1 + 2 1 + 4 = 4 + 1