Chứng minh rằng 1+3+32+33+322 không phải là số chính phương
Bài 1. Cho 𝐴 = 3 + 32 + 33 + ⋯ + 330.
- Chứng minh rằng: 𝐴 ⋮ 13 và 𝐴 ⋮ 52.
- Hỏi A có phải là số chính phương không? Tại sao?
A=3+32+33+.....+320
Số trên là số chính phương hay không phải là số chính phương
Lời giải:
Ta thấy
$3^2\vdots 9$
$3^3=3^2.3\vdots 9$
......
$3^{20}=3^2.3^{18}\vdots 9$
$\Rightarrow 3^2+3^3+...+3^{20}\vdots 9$
$\Rightarrow A=3+3^2+3^3+...+3^{20}$ chia hết cho 3 nhưng không chia hết cho 9
$\Rightarrow A$ không thể là số chính phương.
Chứng minh rằng B=3+32+3+...+399 không là số chính phương
Cho \(A=1+3+3^2+3^3+3^4+...+3^{90}\) CMR \(A\) không phải là số chính phương
Lời giải:
$A=1+3+3^2+(3^3+3^4+3^5+3^6)+(3^7+3^8+3^9+3^{10})+...+(3^{87}+3^{88}+3^{89}+3^{90})$
$=13+3^3(1+3+3^2+3^3)+3^7(1+3+3^2+3^3)+....+3^{87}(1+3+3^2+3^3)$
$=13+(1+3+3^2+3^3)(3^3+3^7+...+3^{87})$
$=13+40(3^3+3^7+...+3^{87})$
$\Rightarrow A$ chia 5 dư 3
Do đó A không là scp.
Ta có:
\(A=1+3+3^2+3^3+...+3^{90}\)
\(3A=3\cdot\left(1+3+3^2+...+3^{90}\right)\)
\(3A=3+3^2+3^3+...+3^{91}\)
\(3A-A=3+3^2+3^3+...+3^{91}-1-3-3^2-...-3^{90}\)
\(2A=3^{91}-1\)
\(A=\dfrac{3^{91}-1}{2}\)
Mà: \(3^{91}-1\) không phải là số chính phương nên \(A=\dfrac{3^{91}-1}{2}\) không phải là số chính phương
Chứng minh rằng S=1+3^1+3^2+3^4+...+3^30 không phải là số chính phương
chứng minh rằng :B=2402-1 không phải là số chính phương
chứng minh rằng
a, tổng của ba số chính phương liên tiếp không phải là một số chính phương
b, tổng S= 12 +22+32+...+302 không phải là số chính phương
chứng minh rằng các số 3^n+4 đều không phải là số chính phương
Cho S=1+3+32+...+330.Chứng minh rằng S không phải là số chính phương
A=1+3+3^2...+3^30 (1)
Nhan 2 ve voi 3 ta duoc :
3A=3+3^2+3^3+...+3^31 (2)
Lay (2)-(1) ta duoc :
2A=1+3^31
2A=1+...7
2A=...8
A=...8:2
A=...4
Vay A khong phai la so chinh phuong
**** nhe
Bài 1. Chứng minh rằng tổng của 4 số chính phương liên tiếp không thể là một số chính phương.
Bài 2. Chứng minh rằng tổng của 5 số chính phương liên tiếp không thể là một số chính phương.
Bài 3. Cho bốn chữ số 0,2,3,4. Tìm số chính phương có 4 chữ số được tạo bởi cả 4 chữ số trên.
Bài 4. Tìm số nguyên tố p thỏa mãn
a) p 2 + 62 cũng là số nguyên tố.
b) p 2 + 14 và p 2 + 6 cũng là số nguyên tố.