cho tam giác nhọn ABC có \(BAC=60\) độ, chứng minh \(BC^2=AB^2+AC^2-AB.AC\)
Cho tam giác ABC nhọn biết góc A = 60 độ . Chứng minh rằng BC^2 = AB^2 +AC^2 - AB.AC
Cho tam giác ABC nhọn biết góc A = 60 độ . Chứng minh rằng BC^2 = AB^2 +AC^2 - AB.AC
Cho tam giác ABC nhọn có góc A=60o. Chứng minh: BC2=AB2+AC2-AB.AC
cho tam giác nhọn ABC, cho góc BAC=600 .CMR :BC2 =AB2 +AC2 - AB.AC
rất hân hạnh làm quen you!(^^)
vẽ ch vuông với ab
tam giác hac vuông tại h,có góc a=60độ nên là nửa tam giác đều
nên AH=AC/2
DO ĐÓ HB=AB-AH=AB-AC/2(1)
TAM GIÁC HAC CÓ GÓC H =90 ĐỘ ,NÊN
AC^2=AH^2+HC^2,NÊN HC^2=AC^2-(AC/2)^2=3AC^2/4(2)
TAM GIÁC HBC VUÔNG TẠI,NÊN
BC^2=HB^2+HC^2
TỪ (1)VÀ (2),TA CÓ
BC^2=(AB-AC/2)^2+3AC^2/4=(AB-AC/2)(AB-AC/2)=3AC^2/4
=AB(AB-AC/2)-AC/2(AB-AC/2)+3AC^2/4
=(AB^2-AB*AC+AC^2/4)+3AC^2/4
=AB^2+AC^2-AB*AC
XONG RỒI ĐÓ.GIÚP TUI CÁI COI!
TUI MỚI ĐK NÊN K.O BIẾT LÀM SAO VÀO THU TOÁN 7
Cho tam giác ABC nhọn, góc BAC = 60 độ.
C/m rằng \(BC^2=AB^2+AC^2-AB.AC\)
Cho tam giác ABC có góc A = 60 độ. Chứng minh rằng \(BC^2=AB^2+AC^2-AB.AC\)
kẻ BH _|_ AC
xét tam giác ABH vuông tại H => ^ABH + ^BAH = 90 (đl)
^BAH = 60 (Gt)
=> ^ABH = 30; xét tam giác ABH vuông tại H
=> AH = AB/2 (đl)
=> AB = 2AH (1)
Tam giác ABH vuông tại H => HA^2 + HB^2 = AB^2 (pytago)
=> BH^2 = AB^2 - AH^2 (2)
xét tam giác BHC vuông tại H => BC^2 = HB^2 + HC^2 (pytago)
có HC = AC - AH
=> BC^2 = HB^2 + (AC - AH)^2
=> BC^2 = HB^2 + AC^2 - 2AH.AC + AH^2 và (1)(2)
=> BC^2 = AB^2 - AH^2 + AC^2 - AB.AC + AH^2
=> BC^2 = AB^2 + AC^2 - AB.AC
Cho tam giác ABC vuông tại A ( AB<AC), đường cao AH.
a) Chứng minh tam giác BAC và tam giác BHA dồng dạng suy ra AB^2=BH.BC
b) Chứng minh AB.AC=AH.BC
c) cho biết AB=6cm , BC=10cm . Tính độ dài AH,CH
a,
xét tam giác BAC và tam giác BHA có
góc B chung
góc BAC=góc BHA (=90 độ)
=>tam giác BAC đông dạng với tam giác BHA
ta có \(\dfrac{AB}{BH}=\dfrac{BC}{BA}\)=>\(AB^2=BH.BC\)
b,
Xét Tam giác ABC
=>\(\dfrac{AB}{AH}=\dfrac{BC}{AC}\)=>AB.AC=AH.BC
c,
áp dụng định lý py-ta-go vào tam giác ABC vuông tại A
\(AC^2=BC^2-BA^2\)
=>AC=8
Xét tam giác ABC
\(\dfrac{AC}{CH}=\dfrac{AB}{BH}=>\dfrac{8}{CH}=\dfrac{6}{10-CH}\)
=>8(10-CH)=6CH
=>80-8CH=6CH
=>CH sấp sỉ 5cm
áp dụng định lý py-ta-go vào tam giác HBA vuuong tại H
\(AH^2=AB^2-BH^2\)
=>AH=3,31662479
Cho tam giác ABC nhọn với góc BAC=60 độ. CMR (BC^2)=(AB^2)+(AC^2)-AB*AC
Kẻ BH ⊥ AC tại H.Xét tam giác ABH có góc BHA = 90độ (cách kẻ)=> góc ABH + góc BAH = 90độ (phụ nhau) => góc ABH = 90độ - góc BAH = 90độ - 60độ = 30độ => góc ABH = 30độXét tam giác ABH có góc BHA = 90độ và góc ABH = 30độ=> Theo bổ đề trên ta có: AH = AB/2 => 2AH = AB (1)Áp dụng định lý Py-ta-go ta có:AB² = BH² + AH²=> BH² = AB² - AH² (2)Xét tam giác BHC có góc BHC = 90độ (cách kẻ)=> Áp dụng định lý Py-ta-go ta có:BC² = BH² + HC² = BH² + (AC - AH)² = BH² + AC² - 2AH.AC + AH² (3)Thay (1) và (2) vào (3) ta có:BC² = (AB² - AH²) + AC² - AB.AC + AH²<=> BC² = AB² - AH² + AC² - AB.AC + AH<=> BC² = AB² + AC² - AB.AC (đpcm)
Cho \(\Delta ABC\)nhọn với \(\widehat{BAC}=60^0.\)Chứng minh rằng: \(BC^2=AB^2+AC^2-AB.AC\)
Kẻ BH vuông AC tại H
Ta có:
Tam giác BHC vuông tại H
Áp dụng định lí Pitago: \(BC^2=BH^2+HC^2\)
tam giác ABH vuông tại H nên ta suy ra: \(BH^2=AB^2-AH^2\)
và \(HC^2=\left(AC-AH\right)^2=AC^2-2AC.AH+AH^2\)
Vậy \(BC^2=AB^2-AH^2+AC^2-2AC.AH+AH^2=AB^2+AC^2-2AC.AH\)
Xét tam giác vuông AHB tại H có góc A =60 độ => góc B bằng 30 độ
Áp dụng định lí trong một tam giác vuông cạnh đối diện với góc 30 độ bằng một nửa cạnh huyền
nên ta có: \(AH=\frac{1}{2}AB\)hay 2AH=AB
Thay vào ta suy ra đc điều phải chứng minh
Kẻ \(CH\perp AB\left(H\in AB\right)\)
Ta có:Xét \(\Delta AHC\) có:\(\widehat{CHA}=90^0,\widehat{HAC}=60^0\Rightarrow\widehat{ACH}=30^0\)
\(\Rightarrow AH=\frac{AC}{2}\)(Theo tính chất cạnh đối diện với góc 30 độ bằng một nửa cạnh huyền)
\(\Rightarrow HB=AB-HA=AB-\frac{AC}{2}\)
Xét \(\Delta HAC\) có:\(AC^2=HA^2+HC^2\Rightarrow HC^2=AC^2-AH^2=AC^2-\left(\frac{AC}{2}\right)^2=\frac{3}{4}AC^2\)(Theo định lý Pythagore)
Xét \(\Delta BCH\) có:\(BC^2=BH^2+CH^2=\left(AB-\frac{AC}{2}\right)^2+\frac{3}{4}AC^2\)
\(=\left(AB-\frac{AC}{2}\right)\left(AB-\frac{AC}{2}\right)+\frac{3}{4}AC^2\)
\(=AB\left(AB-\frac{AC}{2}\right)-\frac{AC}{2}\left(AB-\frac{AC}{2}\right)+\frac{3}{4}AC^2\)
\(=AB^2-AB\cdot AC+\frac{AC^2}{4}+\frac{3}{4}AC^2\)
\(=AB^2-AB\cdot AC+AC^2\left(đpcm\right)\)