Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
JinJin Chobi
Xem chi tiết
JinJin Chobi
Xem chi tiết
Nguyễn Hồng Ngọc
Xem chi tiết
Phạm Nguyễn Bảo Ngọc
28 tháng 3 2016 lúc 19:29

bn có cần gấp ko

Phạm Nguyễn Bảo Ngọc
28 tháng 3 2016 lúc 19:30

nt riêng cko mk nha

Lê Văn Hải
Xem chi tiết
lỗ phong
19 tháng 1 2015 lúc 16:52

rất hân hạnh làm quen you!(^^)

vẽ ch vuông với ab

tam giác hac vuông tại h,có góc a=60độ nên là nửa tam giác đều

nên AH=AC/2

DO ĐÓ HB=AB-AH=AB-AC/2(1)

TAM GIÁC HAC CÓ GÓC H =90 ĐỘ ,NÊN

AC^2=AH^2+HC^2,NÊN HC^2=AC^2-(AC/2)^2=3AC^2/4(2)

TAM GIÁC HBC VUÔNG TẠI,NÊN

BC^2=HB^2+HC^2

TỪ (1)VÀ (2),TA CÓ

BC^2=(AB-AC/2)^2+3AC^2/4=(AB-AC/2)(AB-AC/2)=3AC^2/4

        =AB(AB-AC/2)-AC/2(AB-AC/2)+3AC^2/4

        =(AB^2-AB*AC+AC^2/4)+3AC^2/4

       =AB^2+AC^2-AB*AC

    XONG RỒI ĐÓ.GIÚP TUI CÁI COI!

TUI MỚI ĐK NÊN K.O BIẾT LÀM SAO VÀO THU TOÁN 7

 

Loveduda
Xem chi tiết
Nguyễn Mai Anh
Xem chi tiết
Nguyễn Phương Uyên
22 tháng 3 2020 lúc 11:38

A B C H

kẻ BH _|_ AC

xét tam giác ABH vuông tại H => ^ABH + ^BAH = 90 (đl)

^BAH = 60 (Gt)

=> ^ABH = 30; xét tam giác ABH vuông tại H

=> AH = AB/2 (đl)

=> AB = 2AH                  (1)

Tam giác ABH vuông tại H => HA^2 + HB^2 = AB^2 (pytago)

=> BH^2 = AB^2 - AH^2         (2)

xét tam giác BHC vuông tại H => BC^2 = HB^2 + HC^2 (pytago)

có HC = AC - AH

=> BC^2 = HB^2 + (AC - AH)^2 

=> BC^2 = HB^2 + AC^2 - 2AH.AC + AH^2 và (1)(2)

=> BC^2 = AB^2 - AH^2 + AC^2 - AB.AC + AH^2

=> BC^2 = AB^2 + AC^2 - AB.AC

Khách vãng lai đã xóa
Nguyễn Hằng
Xem chi tiết
ha xuan duong
23 tháng 3 2023 lúc 21:28

.

 

ha xuan duong
23 tháng 3 2023 lúc 21:47

a,
xét tam giác BAC và tam giác BHA có
góc B chung
góc BAC=góc BHA (=90 độ)
=>tam giác BAC đông dạng với tam giác BHA
ta có \(\dfrac{AB}{BH}=\dfrac{BC}{BA}\)=>\(AB^2=BH.BC\)
b,
Xét Tam giác ABC 
=>\(\dfrac{AB}{AH}=\dfrac{BC}{AC}\)=>AB.AC=AH.BC
c,
áp dụng định lý py-ta-go vào tam giác ABC vuông tại A
\(AC^2=BC^2-BA^2\)
=>AC=8
Xét tam giác ABC 
\(\dfrac{AC}{CH}=\dfrac{AB}{BH}=>\dfrac{8}{CH}=\dfrac{6}{10-CH}\)
=>8(10-CH)=6CH
=>80-8CH=6CH
=>CH sấp sỉ 5cm
áp dụng định lý py-ta-go vào tam giác HBA vuuong tại H
\(AH^2=AB^2-BH^2\)
=>AH=3,31662479

Thái Thị Minh Trang
Xem chi tiết
Thanh Hoàng Thanh
7 tháng 12 2021 lúc 15:37

Kẻ BH ⊥ AC tại H.Xét tam giác ABH có góc BHA = 90độ (cách kẻ)=> góc ABH + góc BAH = 90độ (phụ nhau) => góc ABH = 90độ - góc BAH = 90độ - 60độ = 30độ => góc ABH = 30độXét tam giác ABH có góc BHA = 90độ và góc ABH = 30độ=> Theo bổ đề trên ta có: AH = AB/2 => 2AH = AB (1)Áp dụng định lý Py-ta-go ta có:AB² = BH² + AH²=> BH² = AB² - AH² (2)Xét tam giác BHC có góc BHC = 90độ (cách kẻ)=> Áp dụng định lý Py-ta-go ta có:BC² = BH² + HC² = BH² + (AC - AH)² = BH² + AC² - 2AH.AC + AH² (3)Thay (1) và (2) vào (3) ta có:BC² = (AB² - AH²) + AC² - AB.AC + AH²<=> BC² = AB² - AH² + AC² - AB.AC + AH<=> BC² = AB² + AC² - AB.AC (đpcm)

nguyen thi bao tien
Xem chi tiết
Nguyễn Linh Chi
15 tháng 3 2019 lúc 11:25

A B C H 60

Kẻ BH vuông AC tại H

Ta có:

Tam giác BHC vuông tại H

Áp dụng định lí Pitago: \(BC^2=BH^2+HC^2\)

tam giác ABH vuông tại H nên ta suy ra: \(BH^2=AB^2-AH^2\)

và \(HC^2=\left(AC-AH\right)^2=AC^2-2AC.AH+AH^2\)

Vậy \(BC^2=AB^2-AH^2+AC^2-2AC.AH+AH^2=AB^2+AC^2-2AC.AH\)

Xét tam giác vuông AHB tại H có góc A =60 độ => góc B bằng 30 độ

Áp dụng định lí trong một tam giác vuông cạnh đối diện với góc 30 độ bằng một nửa cạnh huyền

nên ta có: \(AH=\frac{1}{2}AB\)hay 2AH=AB

Thay vào ta suy ra đc điều phải chứng minh

zZz Cool Kid_new zZz
15 tháng 3 2019 lúc 11:49

A B C H

Kẻ \(CH\perp AB\left(H\in AB\right)\)

Ta có:Xét \(\Delta AHC\) có:\(\widehat{CHA}=90^0,\widehat{HAC}=60^0\Rightarrow\widehat{ACH}=30^0\)

\(\Rightarrow AH=\frac{AC}{2}\)(Theo tính chất cạnh đối diện với góc 30 độ bằng một nửa cạnh huyền)

\(\Rightarrow HB=AB-HA=AB-\frac{AC}{2}\)

Xét \(\Delta HAC\) có:\(AC^2=HA^2+HC^2\Rightarrow HC^2=AC^2-AH^2=AC^2-\left(\frac{AC}{2}\right)^2=\frac{3}{4}AC^2\)(Theo định lý Pythagore)

Xét \(\Delta BCH\) có:\(BC^2=BH^2+CH^2=\left(AB-\frac{AC}{2}\right)^2+\frac{3}{4}AC^2\)

\(=\left(AB-\frac{AC}{2}\right)\left(AB-\frac{AC}{2}\right)+\frac{3}{4}AC^2\)

\(=AB\left(AB-\frac{AC}{2}\right)-\frac{AC}{2}\left(AB-\frac{AC}{2}\right)+\frac{3}{4}AC^2\)

\(=AB^2-AB\cdot AC+\frac{AC^2}{4}+\frac{3}{4}AC^2\)

\(=AB^2-AB\cdot AC+AC^2\left(đpcm\right)\)