x+(m+1)y=2 (1)
(m+1)x-y=m+1 (2)
tim m để hệ phương trình có nghiệm (x;y) duy nhất thỏa mản x+y+2014 đạt giá trị nhỏ nhất
Cho hệ phương trình
y=m+1)x=y=m\\ x+(m-1))=2
a) Giải hệ PT khi m = 3 b) Tim m để hệ có nghiệm duy nhất( (x; y) sao cho x+y nhỏ nhất?
- 1 = m + 1
Bài 1:Cho hệ
mx+y=3 (1)
9x+my=2m+3 (2)
Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn: 3x+2y=9
Bài 2:Cho hệ
mx+y= m^2
x+my=1 (m là tham số)
Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn x+y>0
cho hệ phương trình
\(\left\{{}\begin{matrix}-2mx+y=5\\mx+3y+1\end{matrix}\right.\)
a)giải hệ phương trình khi m=2
b)giải hệ phương trình theo m
c)tìm m để hệ có nghiệm (x;y) là các số dương
d)tìm m để hệ phương trình có nghiệm thỏa mãn x^2+y^2=1
Mình mạn phép sửa lại phương trình $2$ của bạn là $mx+3y=1$ nhé.
ĐK: $m\neq 0$
a) Khi $m=2,$ hệ phương trình là:
\(\left\{{}\begin{matrix}-4x+y=5\\2x+3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-4x+y=5\\4x+6y=2\end{matrix}\right.\Rightarrow7y=7\Leftrightarrow y=1\Rightarrow x=-1\)
b) \(\left\{{}\begin{matrix}-2mx+y=5\\mx+3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2mx+y=5\\2mx+6y=2\end{matrix}\right.\Rightarrow7y=7\Leftrightarrow y=1\Rightarrow x=-\dfrac{2}{m}\)
c) Do ta luôn có $y=1$ là số dương nên chỉ cần chọn $m$ sao cho:
\(x=-\dfrac{2}{m}>0\Leftrightarrow m< 0\)
d) \(x^2+y^2=1\Leftrightarrow\left(-\dfrac{2}{m}\right)^2+1^2=1\Leftrightarrow\dfrac{4}{m^2}=0\) (vô lý)
Vậy không tồn tại $m$ sao cho $x^2+y^2=1.$
1) Giải hệ phương trình:
\(\dfrac{1}{x-2}+\dfrac{1}{y-1}=2\)
\(\dfrac{2}{x-2}-\dfrac{3}{y-1}=1\)
2) Cho phương trình: \(^{x^2}\)– 2(m + 1)x + 4m = 0
a,Tìm m để phương trình có hai nghiệm phân biệt \(x_1,x_2\)
b. Tìm m để hai nghiệm x1, x2 thỏa mãn \(\left(x_1-x_2\right)^2-x_1.x_2=3\)
Giaỉ chi tiết giúp mình 1 chút ạ. Mình cảm ơn
1, ĐKXĐ:\(x\ne2,y\ne1\)
Đặt `1/(x-2)` = a, `1/(y-1)` = b
\(Hệ.\Leftrightarrow\left\{{}\begin{matrix}a+b=2\\2a-3b=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{7}{5}\\b=\dfrac{3}{5}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x-2}=\dfrac{7}{5}\\\dfrac{1}{y-1}=\dfrac{3}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}7x-14=5\\3y-3=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{19}{7}\\y=\dfrac{8}{3}\end{matrix}\right.\)\(2,\Delta'=\left[-\left(m+1\right)\right]^2-4m=m^2+2m+1-4m=m^2-2m+1=\left(m-1\right)^2\ge0\)
Để pt có 2 nghiệm phân biệt thì \(\Delta'>0\Leftrightarrow\left(m-1\right)^2>0\Leftrightarrow m-1\ne0\Leftrightarrow m\ne1\)
b, Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1x_2=4m\end{matrix}\right.\)
\(\left(x_1-x_2\right)^2-x_1x_2=3\\ \Leftrightarrow\left(x_1+x_2\right)^2-5x_1x_2=3\\ \Leftrightarrow\left(2m+2\right)^2-5.4m-3=0\\ \Leftrightarrow4m^2+8m+4-20m-3=0\\ \Leftrightarrow4m^2-12m+1=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3+2\sqrt{2}}{2}\\x=\dfrac{3-2\sqrt{2}}{2}\end{matrix}\right.\)
Cho hệ phương trình: x + my = m + 1 mx + y = 2m,Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn x > 2 và y > 1
Bài : Cho hệ phương trình (m + 1)x - y = m + 1 và x + (m -1)y = 2 ( Với m là tham số )
a: Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn x - 2y = 2
b: Tìm các giá trị nguyên của m để hệ phương trình có nghiệm duy nhất (x:y) vơi x,y có giá trị nguyên
Cho hệ phương trình \(\left\{{}\begin{matrix}x+\left(m-1\right)y=2\\\left(m+1\right)x-y=m+1\end{matrix}\right.\)
a, giải hệ với m = 1/2
b, Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn điều kiện x>y
a: \(\Leftrightarrow\left\{{}\begin{matrix}x-\dfrac{1}{2}y=2\\\dfrac{3}{2}x-y=\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-y=4\\3x-2y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x-2y=8\\3x-2y=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=5\\2x-y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=2x-4=6\end{matrix}\right.\)
Cho hệ phương trình {x+(m+1)y=14x−y=−2x+m+1y=14x−y=−2. Tìm m để hệ phương trình có nghiệm (x; y) thỏa mãn
cho hệ phương trình
x + y = m
2x - my = 0
1, giải hệ phương trình (1) khi m=-1
2, xác định giá trí của m để
a, x=1 và y=1 là nghiệm của hệ (1)
b, hệ (1) vô nghiệm
3, tìm nghiệm của hệ phương trinh (1) theo m
4, tìm m để hệ (1) có nghiệm (x,y) thỏa: x + y =1