tim so tu nhien a biet a=2^x.3^y voi x y thuoc N* va a co 15 uoc
Bai 1: a)Tim so tu nhien a biet 1960va2002 chia cho a cung co so du la 28
b)Tim 2 sop tu nhien a va b , biet :BCNN(a,b)=300;UCLN(a,b)=15 va a+15=b
Bai 2:a)Tong sau la binh phuong so nao ?
S=1+3+5+7+...+199
b) Cho so ab va so ababab
1)chung to ababab la boi cua ab
2)So 3 va 10101 co phai la uoc cua ababab khong , vi sao?
Bai 3
a)Hay viet them dang sau so 664 ba chu so de nhan duoc sdo co 6 chu so chia het cho 5,9,11
b)Tim so nguyen x thuoc Z biet rang :
(x^2-1)(x^2-4)<0
Bai 4 :tim so nguyen x va y biet: xy-x+2y=3
biet a=22 nhan 34 voi x,y thuoc N* va a co 9 uoc. Tim a
cho a =2^x . 3^y voi z,y thuoc N* . biet a co 15 uoc . tim a
mấy bn giúp vs nhá
tim x dua vao quan he uoc boi:
tim so tu nhien x sao cho x-1 la uoc cua 12
tim so tu nhien x sao cho 2x+1 la uoc cua 28
tim so tu nhien x sao cho x+15 la boi cua x+3
tim cac so nguyen x,y sao cho (x+1)(y-2)=3
tim so nguyen x sao cho(x+2).(y-1)=2
tim so nguyen to x vua la uoc cua 275 vua la uoc cua 180
tim so nguyen to x,y biet x+y=12 va UCLL (x:y)=5
tim so tu nhien x,y biet x+y=32 va UCLL (x:y)=8
tim so tu nhien x biet x chia het cho10; xchia het cho12; x chia het cho15 va 100<x<150
tim so x nho nhat khac 0b biet x chia het cho 24 va 30
40 chia het cho x . 56 chia het cho x va x>6
1,tim x,y de x-y=4 va 7x5y2 chia het cho 3
2,a,chung minh so co dang abcabc chia het cho 7,11,13
b,chung minh (a+3)(a+6)/2 la so tu nhien voi a thuoc N
3,a, cho 49 diem thuoc doan thang AB va khong co diem nao trung voi A<B.hoi co bao nhieu doan thang duoc tao thanh tu A,B va 49 diem do.
1) Để \(\overline{7x5y1}⋮3\)thì \(\left(7+x+5+y+1\right)⋮3\)
\(\Rightarrow\left(13+x+y\right)⋮3\)
\(\Rightarrow x+y\in\left\{2;5;8;11;17;20;...\right\}\left(1\right)\)
Vì x và y là số có 1 chữ số
\(\Rightarrow0\le x\le9\)và \(0\le y\le9\)
\(\Rightarrow0\le x+y\le18\left(2\right)\)
Từ (1) và (2) \(\Rightarrow x+y\in\left\{2;5;8;11;14;17\right\}\)
Nên ta có bảng giá trị của x, y là:
x + y | 2 | 5 | 8 | 11 | 14 | 17 |
x - y | 4 | 4 | 4 | 4 | 4 | 4 |
x | 3 | 4,5 \(\notin N\) | 6 | 7,5\(\notin N\) | 9 | 6,5\(\notin N\) |
y | -1\(\notin N\) | 2 | 5 | |||
loại | loại | thỏa mãn | loại | thỏa mãn | loại |
Từ bảng giá trị ta thấy các cặp giá trị \(x,y\in N\)để \(\overline{7x5y1}⋮3\)là: 6 và 2; 9 và 5
2)
a) Ta có:
\(\overline{abcabc}\)
\(=\overline{abc}.1000+\overline{abc}\)
\(=\overline{abc}.\left(1000+1\right)\)
\(=\overline{abc}.1001\)
\(=\overline{abc}.7.11.13\)
Vì \(7⋮7\)nên \(\left(\overline{abc}.7.11.13\right)⋮7\left(1\right)\)
Vì \(11⋮11\)nên \(\left(\overline{abc}.7.11.13\right)⋮11\left(2\right)\)
Vì \(13⋮13\)nên \(\left(\overline{abc}.7.11.13\right)⋮13\left(3\right)\)
Từ \(\left(1\right)\left(2\right)\left(3\right)\Rightarrow\left(\overline{abc}.7.11.13\right)⋮7;11;13\)
Vậy số có dạng \(\overline{abcabc}\)luôn chia hết cho 7; 11; 13.
b) Để \(\frac{\left(a+3\right)\left(a+6\right)}{2}\)là số tự nhiên thì \(\left(a+3\right)\left(a+6\right)⋮2\)
Vì a là số tự nhiên nên a là số chẵn hoặc a là số lẻ
(+) Trường hợp 1: a là số chẵn
=> a + 6 là số chẵn
\(\Rightarrow\left(a+6\right)⋮2\)
\(\Rightarrow\left(a+3\right)\left(a+6\right)⋮2\left(4\right)\)
(+) Trường hợp 2: a là số lẻ
=> a + 3 là số chẵn
\(\Rightarrow\left(a+3\right)⋮2\)
\(\Rightarrow\left(a+3\right)\left(a+6\right)⋮2\left(5\right)\)
Từ (4) và (5) \(\Rightarrow\left(a+3\right)\left(a+6\right)⋮2\)với mọi \(a\in N\)
Vậy \(\frac{\left(a+3\right)\left(a+3\right)}{2}\)là số tự nhiên với mọi \(a\in N\)
3)
a) Vì theo bài ta có 49 điểm \(\in AB\)và không trùng với A, B nên sẽ có 51 điểm trên hình vẽ. Lấy 1 điểm bất kì trong 51 điểm. Nối điểm đó với 50 điểm còn lại ta sẽ được 50 đoạn thẳng.
Cứ làm như vậy với 51 điểm thì số lượng đoạn thẳng được tạo thành là:
51.50 = 2550 (đoạn thẳng)
Như vậy mỗi đoạn thẳng đã được tính 2 lần nên số đoạn thẳng thực tế có là:
2550 : 2 = 1275 (đoạn thẳng)
Vậy số lượng đoạn thẳng được tạo nên từ A, B và 49 điểm là 1275 đoạn thẳng.
b) Lấy 1 điểm bất kì trong n điểm. Nối điểm đó với n - 1 điểm còn lại tạo thành n - 1 đường thẳng
Cứ làm như vậy với n điểm thì số lượng đường thẳng được tạo thành là:
n(n - 1) (đường thẳng)
Nhưng như vậy mỗi đường thẳng đã được tính 2 lần nên số đường thẳng thực tế có là:
n(n - 1) : 2 (đoạn thẳng)
Mà theo bài có tất cả 1128 đường thẳng nên ta có:
\(n\left(n-1\right):2=1128\)
\(\Rightarrow n\left(n-1\right)=2256\)
\(n\left(n-1\right)=2^4.3.37\)
\(n\left(n-1\right)=48\left(48-1\right)\)
\(\Rightarrow n=48\)
Vậy để tạo thành 1128 đường thẳng thì sẽ có 48 điểm trong đó không có 3 điểm nào thẳng hàng.
tim 2 so tu nhien a va b biet tich cua chung =210 biet rang voi 2 so tu nhien ab, ta co a.b= uoc chung lon nhat
cho so tu nhien B = a^xb^y; trong do a ;b la so nguyen to khac nhau ;x ;y la cac so tu nhien khac o .Biet B^2 co 15 uoc .Vay B^3 co tat ca uoc
ta có :
\(B^2=a^{2x}b^{2y}\) sẽ có số ước là : \(\left(2x+1\right)\left(2y+1\right)=15\Rightarrow\orbr{\begin{cases}2x+1=3\\2x+1=5\end{cases}}\)
thế nên hoặc x= 1 hoặc x = 2. tương ứng ta có y= 2 hoặc y = 1
vậy \(B^3\) sẽ có số ước là : \(\left(3\times1+1\right)\left(3\times2+1\right)=28\text{ ước}\)
tim 2 so tu nhien A va B biet rang A co n uoc tu nhien la a1,a2,..............,an va B co m uoc so tu nhien la b1,b2,...............,bm thoa man:a1^2.a2^2..........an^2 va b1^2.b2^2.....bm^2=1296
tim 2 so tu nhien A va B biet rang A co n uoc tu nhien la a1,a2,..............,an va B co m uoc so tu nhien la b1,b2,...............,bm thoa man:a1^2.a2^2..........an^2 va b1^2.b2^2.....bm^2=1296