Cho S= abc+bca+cab ( các số này là các số có 3 chữ số)
Chứng tỏ S chia hết cho 37.
Cho số tự nhiên có 3 chữ số abc chia hết cho 37. chứng minh (bca + cab) chia hết cho 37
(abc) chia hết cho 37 ---> 100.a + 10.b + c chia hết cho 37
---> 1000.a + 100.b + 10.c chia hết cho 37
---> 1000.a - 999.a + 100.b + 10.c chia hết cho 37 (vì 999.a chia hết cho 37)
---> 100.b + 10.c + a = (bca) chia hết cho 37
(bca) chia hết cho 37 ---> 100.b+10.c+a chia hết cho 37
---> 1000.b + 100.c + 10.a chia hết cho 37
---> 1000.b - 999.b + 100.c + 10.a chia hết cho 37 (vì 999.b chia hết cho 37)
---> 100.c + 10.a + b = (cab) chia hết cho 37
Cho abc ,bca, cab là các số tự nhiên có 3 chữ số.
Chứng minh rằng nếu abc chia hết cho 37 thì bca và cab cũng chia hết cho 37.
C/minh:abc chia hết cho 37 thì cab và bca cũng chia hết cho 37
( abc ,cab , bca là các số tự nhiên )
Chứng minh rằng: nếu số tự nhiên abc chia hết cho 37 thì các số bca và cab cũng chia hết cho 37 ?
(abc) chia hết cho 37=> 100.a + 10.b + c chia hết cho 37
=> 1000.a + 100.b + 10.c chia hết cho 37
=> 1000.a - 999.a + 100.b + 10.c chia hết cho 37 (vì 999.a chia hết cho 37)
=> 100.b + 10.c + a = (bca) chia hết cho 37
(abc) chia hết cho 37 ---> 100.a + 10.b + c chia hết cho 37
---> 1000.a + 100.b + 10.c chia hết cho 37
---> 1000.a - 999.a + 100.b + 10.c chia hết cho 37 (vì 999.a chia hết cho 37)
---> 100.b + 10.c + a = (bca) chia hết cho 37
(bca) chia hết cho 37 ---> 100.b+10.c+a chia hết cho 37
---> 1000.b + 100.c + 10.a chia hết cho 37
---> 1000.b - 999.b + 100.c + 10.a chia hết cho 37 (vì 999.b chia hết cho 37)
---> 100.c + 10.a + b = (cab) chia hết cho 37
Chứng minh rằng mỗi số tự nhiên abc chia hết cho 37 thì các số bca và cab chia hết cho 37.
Số (abc) chia hết cho 37 => 100a + 10b + c chia hết cho 37 =>(Nhân 10 vô) 1000a + 100b + 10c chia hết cho 37 (1). Trừ cho 999a thì (1) vẫn chia hết cho 37 do 999 chia hết cho 37 từ đó suy ra đpcm!
Chứng minh rằng số tự nhiên có 3 chữ số là \(\overline{abc}\) và \(\overline{cab}\)chia hết cho 37 thì số \(\overline{bca}\) cũng chia hết cho 37
cho S = abc + bca + cab
chứng minh S không phải số chính phuong ( lưu ý : abc ; bca ; cab là các số )
ta có
s = abc + bca + cab
=> s =( 100a + 10b + c)+ ( 100b + 10c + a)+( 100c + 10a+b )
=>S = 100a + 10b + c + 100b + 10c + a + 100c + 10a + b
=> S = 111a + 111b + 111c
=> S = 111( a+b+c )= 37 . 3( a+b + c)
giả sử S là số chính phương thì S phải chứa thừa số nguyên tố 37 với số mũ chẵn nên
3(a+b+c) chia hết 37
=> a+b+c chia hết cho 37
Điều này không xảy ra vì 1 \(\le a+b+c\le27\)
vậy S = abc + bca + cab không phải là số chính phương
S = abc (ngang) + bca (ngang) + cab (ngang)
= 100a + 10b + c + 100b + 10c + a + 100c + 10a + b
= 111a + 111b + 111c
= 111.(a + b + c)
=> Không phải là số chính phương vì a,b,c là các chữ số tự nhiên nên a + b + c \(\ne\) 111
S = abc + bca + cab
=> S = ( 100a + 10b + c ) + ( 100b + 10c + a)+ ( 100c + 10a + b)
=> S = 100a + 10b + c + 100b + 10c + a + 100c + 10a +b
=> S = 111a + 111b + 111c
=> S = 111( a+b+c)
vì 0< a+b+c \(\le\) 27 nên a + b + c không chia hết cho 37
mặt khác ( 3 ; 37)=1 nên 3( a+b+c) không chia hết cho 37
=> S không phải là số chính phương
B1: chứng tỏ rằng
a) Trong bốn số tự nhiên bao giờ cùng có ít nhất hai số có hiệu chia hết cho ba
b) nếu abc chia hết cho 37 thì bca chia hết cho 37 và cab chia hết cho 37( lưu ý trên abc , bca và cab có dấu gạch ngang )
B2: tìm số tự nhiên x sao cho :
4n+3 chia hết cho 2n+1
B1 a
gọi 4 số TN liên tiếp là :
a ; a+1 ;a+2 ;a+3
lấy a+3-a=3 chia hết cho 3
Bài 2
có 4n+3 chia hết cho 2n+1 (1)
lại có 2n+1 chia hết cho 2n+1
=>4n+2 chia hết cho 2n+1 (2)
Lấy (1)-(2)
=>1chia hết cho 2n+1
=>2n+1=1 hoăc -1
tự giải tiếp
chưng minh rằng : nếu số tự nhiên abc chia hết cho 37 thì các số bca và cab cũng chia hết cho 37
ta co:abc=100a+10b+1c=111.abc chia het cho 37
bca=100b.10c.1a=111bca chia het cho 37
cab=100c.10a.1b=111cba
=>abc,bca,cab deu chia het cho 37