Ta có \(\overline{abc}=100a+10b+c\)
\(\overline{bca}=100b+10c+a\)
\(\overline{cab}=100c+10a+b\)
Từ đó \(\Rightarrow\overline{abc}+\overline{bca}+\overline{cab}=100a+10b+c+100b+10c+a+100c+10a+b\)
\(=111a+111b+111c=111\left(a+b+c\right)\)
Mà 111 chia hết cho 37 nên \(\overline{abc}+\overline{bca}+\overline{cab}\)chia hết cho 37
ta thấy abc+bca+cab=111a+111b+111c
=111((a+b+c)=3x37x(a+b+c)chia hết cho 37