cnr 7^2^4n+1 + 4^3^4n+1 -65 chia het cho 120
Chứng minh
a) 22^(10n+1)+19 chia hết cho 23
b) 72^(4n+1)+43^(4n+1)--65 chia het cho 100
thám tử lưng danh conan à
a/ n+7 chia het cho n+1
b/3n+5 chia het cho n-2
c/ 4n+3 chia het cho 3n+1
d/n+5 chia het cho 3n-7
e/ n+2 chia het cho 5n-9
g/ 3n+5 chia het cho 4n+3
h/ 4n+1 chia het cho 7n-2
đề kiểu gì mà nhiều vậy pạn
kiểu vậy làm mệt lắm
đồng dư thức : chứng minh rằng
\(7^{2^{4n+1}}+4^{3^{4n+1}}-65\) chia hết cho 100 mọi người giúp mình với, thanks
Lời giải:
Bổ sung điều kiện $n$ là số tự nhiên khác $0$
Gọi biểu thức trên là $A$. Ta có:
\(7\equiv -1\pmod 4\Rightarrow 7^{2^{4n+1}}\equiv (-1)^{2^{4n+1}}\equiv 1\pmod 4\)
\(4^{3^{4n+1}}\equiv 0\pmod 4\)
\(\Rightarrow A\equiv 1+0-65=-64\equiv 0\pmod 4\)
Vậy $A\vdots 4(*)$
Mặt khác:
Với $n$ là số tự nhiên khác $0$ thì $2^{4n+1}$ chia hết cho $4$
$\Rightarrow 7^{2^{4n+1}}=7^{4k}=(7^4)^k\equiv 1\pmod {25}$
$3^{4n+1}=3.81^n\equiv 3\pmod {10}$
$\Rightarrow 3^{4n+1}=10t+3$
$\Rightarrow 4^{3^{4n+1}}=4^{10t+3}=64.(4^{10})^t\equiv 64\pmod {25}$
Do đó:
$A\equiv 1+64-65\equiv 0\pmod {25}$ hay $A\vdots 25(**)$
Từ $(*); (**)\Rightarrow A\equiv 0\pmod {100}$
Ta có đpcm.
Bạn có thể gõ lại công thức rõ hơn được không?
1/ Chứng minh n5-5n3+4n chia hết cho 120 với mọi số nguyên n
2 / Chứng minh rằng n3+3n2+n+3 chia het chi 48 với mọi số lẽ n
3/ CMR n^4+4n3-4n2-16n chia hết cho 384 với mọi số nguyên n
1,
A = n^5 - 5n^3 + 4n = n.(n^4 - 5n^2+4)
= n.( n^4 - 4n^2 - n^2 + 4)
= n.[ n^2.(n^2 - 1) - 4.(n^2 - 1)
= n.(n^2) . (n^2 - 4)
= n.(n-1).(n+1).(n+2).(n-2)
A chia hết cho 120 (vìđây là 5 số liên tiếp, vì thế nó chia hết cho 2, 3, 4, 5. Mà 2.3.4.5=120 nên A chia hết cho 120 Với mọi n thuộc Z.)
\(7^2^{^{4n+1}}+4^{3^{4n+1}}-65\)chia hết cho 100
Chứng minh bằng đồng dư thức
CHỨNG MINH RẰNG
a; 74n- 1 chia hết cho 5
b; (34n+1+2)chia het cho 5
c; ( 92n+1+1)chia het cho 10
a) 74n = (72)2n = 492n = (....1)
=> 74n - 1 có tận cùng là 0 nên chia hết cho 5
b) 34n+1 = (32)2n .3 = 92n.3 = (....1).3 = (....3)
=> 34n+1 + 2 có tận cùng là 5 => chia hết cho 5
c) 92n+1 = (92n). 9 (...1).9 = (....9)
=> 92n+1 +1 có tận cùng la 0 => chia hết cho 5
cho mk hỏi câu này với các bạn ơi
giúp mk với nha!!!!
12^4n+1 + 3^4n+1 chia hết cho 5
CHỨNG MINH NHA!
Chứng minh bằng đồng dư thức :
\(7^{2^{4n+1}}+4^{3^{4n+1}}-65\) chia hết cho 100
Chứng minh
a) 74n-1 chia het cho 5
b) 34n+1 không chia het cho 5
BAI 1: chung to rang 175 + 244 + -1321 chia het cho 10
BAI 2:chung minh rang voi moi so tu nhien n :
a) 74n -1 chia het cho 5
b) 34n+1 +2 chia het cho 5