Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
haoeditz
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 3 2023 lúc 14:05

8:

\(A=\dfrac{20^{10}-1+2}{20^{10}-1}=1+\dfrac{2}{20^{10}-1}\)

\(B=\dfrac{20^{10}-3+2}{20^{10}-3}=1+\dfrac{2}{20^{10}-3}\)

mà 20^10-1>20^10-3

nên A<B

Đinh Công HUY
Xem chi tiết
Sooya
17 tháng 12 2017 lúc 19:57

a) S = 2 + 22 + 23 + 24 +.....+ 29 + 210

   = (2 + 22) + (23 + 24) +.....+ (29 + 210)

   = 2(1 + 2) + 23(1 + 2) +....+ 29(1 + 2)

   = 3.(2 + 23 +.... + 29) chia hết cho 3

   => S = 2 + 22 + 23 + 24 +.....+ 29 + 210 chia hết cho 3 (Đpcm)

b) 1+32+33+34+...+399

=(1+3+32+33)+....+(396+397+398+399)

=40+.........+396.40

=40.(1+....+396) chia hết cho 40 (đpcm)

Đinh Công HUY
17 tháng 12 2017 lúc 19:57

ai trả lời giúp mình mình k cho

Không Tên
17 tháng 12 2017 lúc 19:59

BÀI 1:

S = 2 + 22 + 23 + 24 + ..... + 210

= (2 + 22) + ( 23 + 24) + ..... + (27 + 28) + (29 + 210)

= 2(1 + 2) + 23(1 + 2) + ..... + 27(1 + 2) + 29(1 + 2)

= 3(2 + 23 + .... + 27 + 29)    \(⋮3\)

BÀI 2:

1 + 3 + 32 + 33 + ....... + 399

= (1 + 3 + 32 + 33) + ..... + (396 + 397 + 398 + 399)

= (1 + 3 + 32 + 33) + ..... + 396(1 + 3 + 32 + 33)

= 40(1 + 34 + ..... + 396)     \(⋮40\)

Đặng Quỳnh Anh
Xem chi tiết
Nguyễn Thanh Hằng
25 tháng 7 2018 lúc 11:45

\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+.......+\dfrac{1}{2^{10}}\)

\(\Leftrightarrow2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+....+\dfrac{1}{2^9}\)

\(\Leftrightarrow2A-A=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+....+\dfrac{1}{2^{10}}\right)\)

\(\Leftrightarrow A=1-\dfrac{1}{2^{10}}\)

\(\Leftrightarrow A+\dfrac{1}{2^{10}}=1\left(đpcm\right)\)

Hùng Đặng Tiến
18 tháng 2 2019 lúc 21:59

1+1=3

Đặng Quỳnh Anh
Xem chi tiết
Nguyễn Ngọc Anh Minh
25 tháng 7 2018 lúc 14:47

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}\)

\(A=2A-A=1-\frac{1}{2^{10}}\Rightarrow A+\frac{1}{2^{10}}=1-\frac{1}{2^{10}}+\frac{1}{2^{10}}=1\)

Đoàn Đức Hà
16 tháng 6 2021 lúc 15:04

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\)

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}\)

\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)

\(A=1-\frac{1}{2^{10}}\)

\(A+\frac{1}{2^{10}}=1\)

Khách vãng lai đã xóa
Xem chi tiết
Minh Nhân
14 tháng 7 2021 lúc 18:43

\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{2\cdot2}+\dfrac{1}{2\cdot2}-\dfrac{1}{2\cdot2\cdot2}+\dfrac{1}{2\cdot2\cdot2}-\dfrac{1}{2\cdot2\cdot2\cdot2}+.....+\dfrac{1}{2^{10}}\)

\(A=1-\dfrac{1}{2^{10}}\)

\(A+\dfrac{1}{2^{10}}=1-\dfrac{1}{2^{10}}+\dfrac{1}{2^{10}}=1\left(dpcm\right)\)

ℓιℓι ♡
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 4 2023 lúc 14:16

A=2/3+2/3^2+...+2/3^10

=>3A=2+2/3+...+2/3^9

=>2A=2-2/3^10

=>A=1-1/3^10<1

Driver DuyAnh Viesky
Xem chi tiết
Không Tên
4 tháng 1 2018 lúc 19:23

\(D=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}\)

Ta thấy:   \(\frac{1}{2^2}< \frac{1}{1.2}=1-\frac{1}{2}\)

              \(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)

             \(\frac{1}{4^2}< \frac{1}{3.4}=\frac{1}{3}-\frac{1}{4}\)

                 \(.......\)

             \(\frac{1}{10^2}< \frac{1}{9.10}=\frac{1}{9}-\frac{1}{10}\)

Cộng theo vế ta được:

\(D< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)\(=1-\frac{1}{10}\)\(< 1\)   (đpcm)

Ngô Bảo Trâm
Xem chi tiết
Nguyễn Đức Anh
23 tháng 4 2015 lúc 9:42

A = \(\frac{1}{2}+\frac{1}{2^{^2}}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\)

2\(\times\)A=\(\frac{2}{2}+\frac{2}{2^2}+\frac{2}{2^3}+...+\frac{2}{2^{10}}\)

2A - A=\(\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}\right)\) -\(\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)

       A= 1 - \(\frac{1}{2^{10}}\)

       A= \(\frac{1023}{1024}\)

      một số chỗ hơi tắt bạn thông cảm nha

nhok_qs cuồng TFBOYS
Xem chi tiết
VN in my heart
3 tháng 5 2016 lúc 21:31

ta có

\(\frac{1}{2^2}<\frac{1}{1.2};\frac{1}{3^2}<\frac{1}{2.3};\frac{1}{4^2}<\frac{1}{3.4};.......;\frac{1}{10^2}<\frac{1}{9.10}\)

=> \(A<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{9.10}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{4}+......+\frac{1}{9}-\frac{1}{10}\)

    \(A<1-\frac{1}{10}=\frac{9}{10}<1\)

vậy A< 1