tìm giá trị nhỏ nhất của A =x^2+15y^2+xy+8x+y+2016
Tìm giá trị nhỏ nhất của biểu thức:
A = x2 + 15y2 + xy + 8x + y + 1992
Ta có:
\(A=x^2+y^2+xy-2x-4y+2016\\ =\left(x+\dfrac{y}{2}-1\right)^2+\dfrac{3}{2}\left(y-1\right)^2+\dfrac{4027}{2}\\ \ge\dfrac{4027}{2}\)
Dấu bằng xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=1\end{matrix}\right.\)
Cho x,y thoả mãn 8x^2 +y^2+1/(4x^2)=4. Tìm giá trị nhỏ nhất của A=xy
Tìm giá trị nhỏ nhất
4x^2 + 4x + 11 X^2 +y^2 +xy + x +y+2016
9x^2 +6x + 12
16x^2 + 8x + 13
25x^2 +10x +14
tìm giá trị nhỏ nhất của
x^2+xy+y^2-5x-4y+2016
A=x2+xy+y2-5x-4y+2016
4A=4x2+4xy+4y2-20x-16y+8064
=[(4y2+4xy+x2)-(8x+16y)+16]+(3x2-12x+12)+8036
=[(x+2y)2-2.(x+2y).4+42]+3(x-4)2+8036
=(x+2y-4)2+3(x-4)2+8036 >=8036
Dấu "=" xảy ra khi x=4 và y=0
Bạn nhân 4 lên là ra mà.Nếu không làm ra thì để mình làm cho.Nếu làm ra rồi thì mình cái nha
bạn Nguyễn Quốc khánh ơi giải hộ tôi chi tiết được k vì tôi cũng đang phân vân câu này
Tìm giá trị nhỏ nhất của
X^2+y^2 +xy +x+y +2016
Giúp mình với
bn xem lại đề nếu k có xy thì mk làm dc
Cho x, y là các số thực khác 0 thỏa mãn: \(2x^2+\frac{y^2}{4}+\frac{1}{x^2}=4\)
Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức A= 2016+ xy
ĐK: x khác 0
Từ\(2x^2+\frac{y^2}{4}+\frac{1}{x^2}=4\)
\(\Rightarrow x^2+2+\frac{1}{x^2}+x^2+xy+\frac{y^2}{4}=6+xy\)
\(\Leftrightarrow\left(x+\frac{1}{x}\right)^2+\left(x+\frac{y}{2}\right)^2=6+xy\)
Do VT > 0\(\Rightarrow6+xy\ge0\Rightarrow xy\ge6\)
Có A = 2016 + xy > 2016 + 6 = 2022
tth : Viết nhầm :V
Đoạn cuối \(6+xy\ge0\Rightarrow xy\ge-6\)
Có A = 2016 + xy > 2016 - 6 = 2010 !!!
Được rồi chứ gì -.-
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+\frac{1}{x}=0\\x+\frac{y}{2}=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2=1\\x=-\frac{y}{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\left(h\right)\hept{\begin{cases}x=-1\\y=2\end{cases}}\)OK ???
tìm giá trị nhỏ nhất của : P=(x-2015)^2 + (x+2016)^2
giải phương trình : \(2x^2-xy-y^2+3x+3y-9=0\)
cho 2 số dương x, y. Hãy tìm giá trị nhỏ nhất của biểu thức \(B=\frac{2015\left(x+y\right)^2}{x^2+y^2}+\frac{2016\left(x+y\right)^2}{xy}\)