Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kieu Ngoc Diem
Xem chi tiết
OoO Kún Chảnh OoO
Xem chi tiết
Cấn Phương Linh
Xem chi tiết
Nguyễn Thị Quỳnh Anh
6 tháng 5 2020 lúc 21:38

a) 234 chia hết cho 2 và chia hết cho 3

b) 750 chia hết cho 2 và chia hết cho 5

c) 243 chia hết cho 9

d) 831 chia hết cho 3 nhưng không chia hết cho 9

e) 891 chia hết cho 3 và chia hết cho 9

HOK TỐT

Khách vãng lai đã xóa
Nguyễn Thu Phương
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
4 tháng 7 2017 lúc 11:17

2) Ta có : 2n - 2 = 2(n - 1) chia hết cho n - 1

Nên với mọi giá trị của n thì 2n - 2 đều chia hết cho n - 1

3) Ta có : 5n - 1 chia hết chi n - 2  

=> 5n - 10 + 9 chia hết chi n - 2 

=> 5(n - 2) + 9 chia hết chi n - 2 

=> n - 2 thuộc Ư(9) = {1;3;9}

Ta có bảng : 

n - 2139
n3511
l҉o҉n҉g҉ d҉z҉
4 tháng 7 2017 lúc 10:57

1) Ta có : 2n + 3 chia hết cho 3n + 1 

<=> 6n + 9 chia hết cho 3n + 1

<=> 6n + 2 + 7 chia hết cho 3n + 1

=>  7 chia hết cho 3n + 1

=> 3n + 1 thuộc Ư(7) = {1;7}

Ta có bảng : 

3n + 117
3n06
n02

Vậy n thuộc {0;2}

Nguyễn Thu Phương
Xem chi tiết
Loan Chu
5 tháng 7 2017 lúc 11:14

Ta có n-3=n+4-7

6)=>n-4+7 chia hết cho n+4

=>7 chia hết cho n+4

=> n+4 thuộc Ư(7)

=> n+4 thuộc {1, -1,7,-7}

=> n thuộc {-3,-5,3,-11}

Nguyễn Tuấn Tài
Xem chi tiết
ANH CÔNG
8 tháng 11 2015 lúc 16:20

tich minh noi cho

 

Gia Hân Tiểu thư
25 tháng 2 2016 lúc 10:58

k rồi đó sao không nói

Nguyễn Ngọc Quỳnh Chi
Xem chi tiết
Nguyễn Ngọc Anh Minh
24 tháng 7 2023 lúc 11:21

A B C H E F I M K

1/

Xét tg vuông ABH có

\(AH^2=AE.AB\)  (Trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

Xét tg vuông ACH có

\(AH^2=AF.AC\)  (Trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

\(\Rightarrow AE.AB=AF.AC\) (cùng bằng \(AH^2\) )

2/

\(HE\perp AB\) (gt)

\(AC\perp AB\) (gt) \(\Rightarrow AF\perp AB\)

=> AF//HE (cùng vuông góc với AB) (1)

Ta có

\(HF\perp AC\) (gt)

\(AB\perp AC\) (gt) \(\Rightarrow AE\perp AC\)

=> AE//HF (cùng vuông góc với AC) (2)

Từ (1) và (2) => AEHF là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hình bình hành )

=> AE = HF

Xét tg vuông AHC có

\(HF^2=AF.FC\) (trong tg vuông bình phương đường cao hạ từ đỉnh góc vuông xuống cạnh huyền bằng tích giữa 2 hình chiếu của 2 cạnh góc vuông trên cạnh huyền)

\(\Rightarrow AE^2=AF.FC\)

3/

E; F cùng nhìn AH dưới góc \(90^o\)

=> AEHF là tứ giác nội tiếp

\(\Rightarrow\widehat{BAH}=\widehat{EFH}\) (góc nội tiếp cùng chắn cung EH) (1)

\(\widehat{AEF}=\widehat{EFH}\) (góc so le trong) (2)

\(\widehat{AEF}=\widehat{IEB}\) (góc đối đỉnh) (3)

\(\widehat{BAH}=\widehat{ACB}\) (cùng phụ với \(\widehat{ABC}\) ) (4)

Xét tg IBE và tg IFC có

Từ (1) (2) (3) (4) \(\Rightarrow\widehat{IEB}=\widehat{ACB}\)

\(\widehat{EIB}\) chung

=> tg IBE đồng dạng với tg IFC (g.g.g)

\(\Rightarrow\dfrac{IE}{IC}=\dfrac{IB}{IF}\Rightarrow IE.IF=IB.IC\)

4/

Ta có

\(\widehat{BAK}+\widehat{BAM}=\widehat{MAK}=90^o\)

\(\widehat{CAM}+\widehat{BAM}=\widehat{BAC}=90^o\)

\(\Rightarrow\widehat{BAK}=\widehat{CAM}\)

Mà \(AM=\dfrac{BC}{2}=MB=MC\) (trong tg vuông trung tuyến thuộc cạnh huyền thì bằng nửa cạnh huyền)

=> tg AMC cân tại M \(\Rightarrow\widehat{CAM}=\widehat{ACM}\)

\(\Rightarrow\widehat{ACM}=\widehat{BAK}\)

Xét tg ABK và tg ACK có

\(\widehat{AKC}\) chung

\(\widehat{BAK}=\widehat{ACM}\) (cmt)

=> tg ABK đồng dạng với tg ACK (g.g.g)

\(\Rightarrow\dfrac{KB}{AK}=\dfrac{AK}{KC}\Rightarrow AK^2=KB.KC\)

Xét tg vuông AKM có

\(AK^2=KH.KM\) (Trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

\(\Rightarrow KH.KM=KB.KC\)

 

 

 

 

 

 

 

huyweegm
Xem chi tiết

Ví dụ: a = 6, b = 3. Ta có a chia hết cho 3 và b chia hết cho 3, nhưng (a+b) = 9 không chia hết cho 6.

Ví dụ: a = 9, b = 3. Ta có a chia hết cho 3 và b chia hết cho 3, nhưng (a+b) = 12 không chia hết cho 9.

Ví dụ: a = 2, b = 4. Ta có a chia hết cho 2 và b chia hết cho 4, nhưng (a+b) = 6 không chia hết cho 4.

Ví dụ: a = 2, b = 4. Ta có a chia hết cho 2 và b chia hết cho 4, nhưng (a+b) = 6 không chia hết cho 6.

Ví dụ: a = 6, b = 9. Ta có a chia hết cho 6 và b chia hết cho 9, nhưng (a+b) = 15 không chia hết cho 6.

Ví dụ: a = 6, b = 9. Ta có a chia hết cho 6 và b chia hết cho 9, nhưng (a+b) = 15 không chia hết cho 9.

Ví dụ: a = 2, b = 2. Ta có a chia hết cho 2 và b chia hết cho 2, nhưng (a+b) = 4 không chia hết cho 4.
😎 Ví dụ: a = 2, b = 2. Ta có a chia hết cho 2 và b chia hết cho 2, nhưng (a+b) = 4 không chia hết cho 6.

Ví dụ: a = 3, b = 9. Ta có a chia hết cho 3 và b chia hết cho 9, nhưng (a+b) = 12 không chia hết cho 9.

Ví dụ: a = 3, b = 9. Ta có a chia hết cho 3 và b chia hết cho 9, nhưng (a+b) = 12 không chia hết cho 6.

Nguyễn Tuấn Tài
Xem chi tiết
ngo le ngoc hoa
24 tháng 7 2015 lúc 8:55

chắc phải làm dài hơn đấy

Feliks Zemdegs
24 tháng 7 2015 lúc 8:57

ngo le ngoc hoa:Quản lí của olm.

nguyenthihuyen
6 tháng 10 2016 lúc 19:37

nhin thoi da ko muon lam suy nghi di ko den lop ma hoi cac ban minh chac ai cung tra loi duoc

Nguyen thi bích ngọc
Xem chi tiết