1,choabc chia hết cho 3;7. Chứng tỏ rằng a+19b+4c chia hết cho 3 và 7
Tìm tất cả các số tự nhiên có 3 chữ số abc sao choabc=n2-1 va cba =(n-2)2
2.
Ta có:
P(0)=d =>d chia hết cho 5
P(1)=a+b+c+d =>a+b+c chia hết cho 5 (1)
P(-1)=-a+b-c+d chia hết cho 5 (2)
Cộng (1) với (2) ta có: 2b+2d chia hết cho 5
Mà d chia hết cho 5 =>2d chia hết cho 5
=>2b chia hết cho 5 =>b chia hết cho 5
P(2)=8a+4b+2c+d chia hết cho 5
=>8a+2c chia hết cho 5 ( vì 4b+d chia hết cho 5)
=>6a+2a+2c chia hết cho 5
=>6a+2(a+c) chia hết cho 5
Mà a+c chia hết cho 5 (vì a+b+c chia hết cho 5, b chia hết cho 5)
=>6a chia hết cho 5
=>a chia hết cho 5
=>c chia hết cho 5
Vậy a,b,c chia hết cho 5
1.
f(x) chia hết cho 3 với mọi x
=> f(0) chia hết cho 3 => C chia hết cho 3
f(1) ; f(-1) chia hết cho 3
=> f(1) = A+B +C chia hết cho 3 và f(-1) = A - B + C chia hết cho 3
=> f(1) + f(-1) chia hết cho 3 và f(1) - f(-1) chia hết cho 3
f(1) + f(-1) chia hết cho 3 => 2A + 2C chia hết cho 3 => A + C chia hết cho 3 mà C chia hết cho 3 => A chia hết cho 3
f(1) - f(-1) chia hết cho 3 => 2B chia hết cho 3 => B chia hết cho 3
Vậy.......................
3.
f(1) + 1.f(-1) = 1+ 1 = 2 => f(1) + f(-1) = 2 (*)
f(-1) + (-1). f(1) = -1 + 1 = 0 => f(-1) - f(1) = 0 => f(-1) = f(1). Thay vào (*)
=> 2. f(1) = 2 => f(1) = 1
1.
a).....34 chia hết cho 2 và chia hết cho 3
b)75.....chia hết cho 2 và chia hết cho 5
c)2.....3 chia hết cho 9
d)8.....1 chia hết cho 3 nhưng không chia hết cho 9
e)8.....1 chia hết cho 3 và chia hết cho 9
a) 234 chia hết cho 2 và chia hết cho 3
b) 750 chia hết cho 2 và chia hết cho 5
c) 243 chia hết cho 9
d) 831 chia hết cho 3 nhưng không chia hết cho 9
e) 891 chia hết cho 3 và chia hết cho 9
HOK TỐT
Tìm n thuộc N, biết:
1) 2n+3 chia hết 3n+1
2)2n-2 chia hết cho n-1
3) 5n-1 chia hết cho n-2
4)3n+1 chia hết cho 2n+2
5)2n-1 chia hết cho 5n-3
6)n-3 chia hết cho n+4
7) 3n+3 chia hết cho n+2
8)4n chia hết cho n-3
9)5n+1 chia hết cho n+3
10)2n-2 chia hết cho n+3
2) Ta có : 2n - 2 = 2(n - 1) chia hết cho n - 1
Nên với mọi giá trị của n thì 2n - 2 đều chia hết cho n - 1
3) Ta có : 5n - 1 chia hết chi n - 2
=> 5n - 10 + 9 chia hết chi n - 2
=> 5(n - 2) + 9 chia hết chi n - 2
=> n - 2 thuộc Ư(9) = {1;3;9}
Ta có bảng :
n - 2 | 1 | 3 | 9 |
n | 3 | 5 | 11 |
1) Ta có : 2n + 3 chia hết cho 3n + 1
<=> 6n + 9 chia hết cho 3n + 1
<=> 6n + 2 + 7 chia hết cho 3n + 1
=> 7 chia hết cho 3n + 1
=> 3n + 1 thuộc Ư(7) = {1;7}
Ta có bảng :
3n + 1 | 1 | 7 |
3n | 0 | 6 |
n | 0 | 2 |
Vậy n thuộc {0;2}
Tìm n thuộc N, biết:
1) 2n+3 chia hết 3n+1
2)2n-2 chia hết cho n-1
3) 5n-1 chia hết cho n-2
4)3n+1 chia hết cho 2n+2
5)2n-1 chia hết cho 5n-3
6)n-3 chia hết cho n+4
7) 3n+3 chia hết cho n+2
8)4n chia hết cho n-3
9)5n+1 chia hết cho n+3
10)2n-2 chia hết cho n+3
Ta có n-3=n+4-7
6)=>n-4+7 chia hết cho n+4
=>7 chia hết cho n+4
=> n+4 thuộc Ư(7)
=> n+4 thuộc {1, -1,7,-7}
=> n thuộc {-3,-5,3,-11}
Cho A = (n -1) (n-1) (n2-1)(n thuộc Z )1) CM:A chia hết 3
Nếu n chia hết cho 3 => n^2 chia hết cho 3 => A chia hết cho 3
nếu A chia hết cho 3 dư 1 => n-1 chia hết cho A => A chia hết cho 3
Nếu n :3 dư 2 => n+1 chia hết cho 3 => a chia hết cho 3
Vậy A chia hết cho 3 với mọi n
Bài 3: ChoABC vuông tại A (AB < AC), đường cao AH. Lấy E, F là hình chiếu của H trên AB, AC.
1. (1đ) CMR: AE. AB = AF. AC?
2. (1đ) CMR: AE2 = AF. FC?
3. (1đ) Cho I là giao điểm của EF và BC. CMR: IE. IF = IB. IC?
4. (0.5đ) Trung tuyến AM của ABC. Qua A kẻ đường thẳng vuông góc với AM cắt BC tại K. CMR: KH. KM = KB. KC
1/
Xét tg vuông ABH có
\(AH^2=AE.AB\) (Trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
Xét tg vuông ACH có
\(AH^2=AF.AC\) (Trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
\(\Rightarrow AE.AB=AF.AC\) (cùng bằng \(AH^2\) )
2/
\(HE\perp AB\) (gt)
\(AC\perp AB\) (gt) \(\Rightarrow AF\perp AB\)
=> AF//HE (cùng vuông góc với AB) (1)
Ta có
\(HF\perp AC\) (gt)
\(AB\perp AC\) (gt) \(\Rightarrow AE\perp AC\)
=> AE//HF (cùng vuông góc với AC) (2)
Từ (1) và (2) => AEHF là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hình bình hành )
=> AE = HF
Xét tg vuông AHC có
\(HF^2=AF.FC\) (trong tg vuông bình phương đường cao hạ từ đỉnh góc vuông xuống cạnh huyền bằng tích giữa 2 hình chiếu của 2 cạnh góc vuông trên cạnh huyền)
\(\Rightarrow AE^2=AF.FC\)
3/
E; F cùng nhìn AH dưới góc \(90^o\)
=> AEHF là tứ giác nội tiếp
\(\Rightarrow\widehat{BAH}=\widehat{EFH}\) (góc nội tiếp cùng chắn cung EH) (1)
\(\widehat{AEF}=\widehat{EFH}\) (góc so le trong) (2)
\(\widehat{AEF}=\widehat{IEB}\) (góc đối đỉnh) (3)
\(\widehat{BAH}=\widehat{ACB}\) (cùng phụ với \(\widehat{ABC}\) ) (4)
Xét tg IBE và tg IFC có
Từ (1) (2) (3) (4) \(\Rightarrow\widehat{IEB}=\widehat{ACB}\)
\(\widehat{EIB}\) chung
=> tg IBE đồng dạng với tg IFC (g.g.g)
\(\Rightarrow\dfrac{IE}{IC}=\dfrac{IB}{IF}\Rightarrow IE.IF=IB.IC\)
4/
Ta có
\(\widehat{BAK}+\widehat{BAM}=\widehat{MAK}=90^o\)
\(\widehat{CAM}+\widehat{BAM}=\widehat{BAC}=90^o\)
\(\Rightarrow\widehat{BAK}=\widehat{CAM}\)
Mà \(AM=\dfrac{BC}{2}=MB=MC\) (trong tg vuông trung tuyến thuộc cạnh huyền thì bằng nửa cạnh huyền)
=> tg AMC cân tại M \(\Rightarrow\widehat{CAM}=\widehat{ACM}\)
\(\Rightarrow\widehat{ACM}=\widehat{BAK}\)
Xét tg ABK và tg ACK có
\(\widehat{AKC}\) chung
\(\widehat{BAK}=\widehat{ACM}\) (cmt)
=> tg ABK đồng dạng với tg ACK (g.g.g)
\(\Rightarrow\dfrac{KB}{AK}=\dfrac{AK}{KC}\Rightarrow AK^2=KB.KC\)
Xét tg vuông AKM có
\(AK^2=KH.KM\) (Trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
\(\Rightarrow KH.KM=KB.KC\)
Ví dụ: a = 6, b = 3. Ta có a chia hết cho 3 và b chia hết cho 3, nhưng (a+b) = 9 không chia hết cho 6.
Ví dụ: a = 9, b = 3. Ta có a chia hết cho 3 và b chia hết cho 3, nhưng (a+b) = 12 không chia hết cho 9.
Ví dụ: a = 2, b = 4. Ta có a chia hết cho 2 và b chia hết cho 4, nhưng (a+b) = 6 không chia hết cho 4.
Ví dụ: a = 2, b = 4. Ta có a chia hết cho 2 và b chia hết cho 4, nhưng (a+b) = 6 không chia hết cho 6.
Ví dụ: a = 6, b = 9. Ta có a chia hết cho 6 và b chia hết cho 9, nhưng (a+b) = 15 không chia hết cho 6.
Ví dụ: a = 6, b = 9. Ta có a chia hết cho 6 và b chia hết cho 9, nhưng (a+b) = 15 không chia hết cho 9.
Ví dụ: a = 2, b = 2. Ta có a chia hết cho 2 và b chia hết cho 2, nhưng (a+b) = 4 không chia hết cho 4.
😎 Ví dụ: a = 2, b = 2. Ta có a chia hết cho 2 và b chia hết cho 2, nhưng (a+b) = 4 không chia hết cho 6.
Ví dụ: a = 3, b = 9. Ta có a chia hết cho 3 và b chia hết cho 9, nhưng (a+b) = 12 không chia hết cho 9.
Ví dụ: a = 3, b = 9. Ta có a chia hết cho 3 và b chia hết cho 9, nhưng (a+b) = 12 không chia hết cho 6.
mọi người xem bài này có đúng ko tại sao olm ko chọn
Cho A = (n -1) (n-1) (n2-1)(n thuộc Z )1) CM:A chia hết 3
Nếu n chia hết cho 3 => n^2 chia hết cho 3 => A chia hết cho 3
nếu A chia hết cho 3 dư 1 => n-1 chia hết cho A => A chia hết cho 3
Nếu n :3 dư 2 => n+1 chia hết cho 3 => a chia hết cho 3
Vậy A chia hết cho 3 với mọi n
nhin thoi da ko muon lam suy nghi di ko den lop ma hoi cac ban minh chac ai cung tra loi duoc
Bài 1: +) 1020 + 2 chia hết cho 3,chia hết cho 9 ?
+) 1010 - 1 chia hết cho 3,chia hết cho 9 không?