Tìm x, y ∈ Z biết: (x-1).(y+2)=11
Bài 2:
b) Tìm x, y, z biết: 2*x = 3*y ; 4*y = 5*z và x + y +z =11
c) Tìm x, biết: (x + 2)n+1 = (x + 2)n+11 (với n là số tự nhiên)
b. Ta có: \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{15}=\frac{y}{10}\) (1)
\(4y=5z\Rightarrow\frac{y}{5}=\frac{z}{4}\Rightarrow\frac{y}{10}=\frac{z}{8}\)(2)
Từ (1) và (2) => \(\frac{x}{15}=\frac{y}{10}=\frac{z}{8}=\frac{x+y+z}{15+10+8}=\frac{11}{33}=\frac{1}{3}\)
\(\frac{x}{15}=\frac{1}{3}\Rightarrow x=\frac{1}{3}\cdot15=5\) \(\frac{y}{10}=\frac{1}{3}\Rightarrow y=\frac{1}{3}\cdot10=\frac{10}{3}\)
\(\frac{z}{8}=\frac{1}{3}\Rightarrow z=\frac{1}{3}\cdot8\Rightarrow z=\frac{8}{3}\)
c. Ta thấy: \(\left(x+2\right)^{n+1}\ge0,\left(x+2\right)^{n+11}\ge0\) với mọi x.
Mà \(\left(x+2\right)^{n+1}=\left(x+2\right)^{n+11}\Rightarrow x+2\in\left\{0,1,-1\right\}\)
TH1: x + 2 = 0 => x = 0 - 2 => x = -2
TH2: x + 2 = 1 => x = 1 - 2 => x = -1
TH3: x + 2 = -1 => x = -1 - 2 => x = -3
tìm x,y,z biết |x-11|+|x-8|^1981+|x+1|=48/(|y-2|+|y-1|+|y+2|)
Tìm x,y thuộc Z biết: (x-1).(y+2)=11
tìm x,y,z biết
x+y+z+11= 2 căn x +4 căn y-1 + 6 căn z-2
Ta có \(2\sqrt{x}\le x+1\)
\(4\sqrt{y-1}\le4+y-1=y+3\)
\(6\sqrt{z-2}\le9+z-2=z+7\)
Cộng vế theo vế ta được
\(2\sqrt{x}+4\sqrt{y-1}+6\sqrt{z-2}\le x+y+z+11\)
Dấu = xảy ra khi x = 1, y = 5, z = 11
tìm x,y,z biết:
a, \(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=x+y+z\)
b,(x-11+y)2+(x-y-4)2=0
A. dk \(\hept{\begin{cases}y+z+1\ne0\\x+z+1\ne0\\x+y\ne2\end{cases}}\)
Ap dung tinh chat day ti so bang nhau ta co
\(\frac{x}{y+z+1}=\frac{y}{x+z+1}\frac{z}{x+y-2}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\) (1)
=> \(x+y+z=\frac{1}{2}\) (*) => y+z =1/2 - x
(1) suy ra \(y+z+1=2x\)
<=> \(\frac{1}{2}-x+1=2x\Rightarrow x=\frac{1}{2}\)
thay vao (*) => y+z=0
tu (1) lai suy ra \(x+z+1=2y\)
<=> \(\hept{\begin{cases}z+y=0\\\frac{1}{2}+z+1=2y\end{cases}\Rightarrow\hept{\begin{cases}z=\frac{-1}{2}\\y=\frac{1}{2}\end{cases}}}\)
vay \(\left\{x;y;z\right\}=\left\{\frac{1}{2};\frac{1}{2};\frac{-1}{2}\right\}\)
b, \(\left(x-11+y\right)^2+\left(x-y+4\right)^2=0\)
<=> \(\hept{\begin{cases}x-11+y=0\\x-y-4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{15}{2}\\y=\frac{7}{2}\end{cases}}}\)
Vay \(\left\{x;y\right\}=\left\{\frac{15}{2};\frac{7}{2}\right\}\)
Bài 1:Tìm x,y,z thuộc Z sao cho:x-y=-9;y-z=-10;z+x=11
Bài 2:Tìm x thuộc Z biết:
a.(x+1)+(x+3)+(x+5)+...+(x+99)=0
b.(x-3)+(x-2)+(x-1)+...+10+11=11
c.x+(x+1)+(x+2)+...+2018+2019=2019
Bài 3:Tìm các số nguyên x,y biết:
a.(x-2)(y-3)=7 b.(x+1)(2y-3)=10
c.xy-3x=-19 d.3x+4y-xy=16
(x+1)+(x+3)+...+(x+99)=0
Tổng các số hạng là: (99+1):2=50 (số hạng)
=> (x+1)+(x+3)+...+(x+99)=0 <=> 50.x+(1+3+5+...+99) = 0
<=> 50.x+=0 <=> 50.x+2500=0 => x=-2500/50=-50
1. tìm số hữu tỉ x;y;z biết
x(y-z) = -11 ; y(y-z-x) = 25 ; z(z+x-y) = 35
2. tìm x;y biết
a, -5x + 1 < 11 ; b, l 0,1 - 0,01 - x l = - 0,001 - lyl
ai giúp em với gấp lắm rồi: mong các bác cho lời giải ko ghi đáp án chống đối
1.Tìm các số hữu tỉ x,y,z biết:
a) x.(x-y+z)=11 ; y.(y-z-x)=25 ; z.(z+x-y)=35
b) (x+2)^2 + (y-3)^4 + (z-5)^6=0
2. So sánh A và B biết
a) A=-1/2011 - 3/11^2 - 5/11^3 - 7/11^4 và B= -1/2011 - 7/11^2 - 5/11^3 - 3/11^4
b) A= 2006/2007 - 2007/2008 + 2008/2009 - 2009/2010 và B= -1/2006.2007 - 1/2008.2009
mong mấy bạn giúp mình mai mình nộp rôì ko đùa đâu
ai lam guip toi cau nay voi mai toi nop bai roi
so sanh 2 phan so sau bang cach nahnh nhat: 2007/2008 voi 2008/2009
tìm x,y thuộc Z biết:
x+y=11; y+Z=3;Z+x=2
cộng hết lại
\(\left(x+y\right)+\left(y+z\right)+\left(z+x\right)=11+3+2=16\)
\(\Rightarrow2\left(x+y+z\right)=16\Rightarrow\left(x+y+z\right)=8\)
thay vào từng cái ban đầu
11+z=8=> z=8-11=-3
3+x=8=> x=8-3=5
2+y=8=> y=8-2=6