Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hàn Minh Đức 123
Xem chi tiết
Hoàng Ngọc Bảo An
Xem chi tiết
Phan Tuấn Anh
23 tháng 2 2022 lúc 18:14

Mình học lớp 5 mà chưa học bài này

Khách vãng lai đã xóa
Hoàng Ngọc Bảo An
17 tháng 4 2022 lúc 9:24

cô ra thêm bài khó trong giờ học cho mấy bạn giỏi có cái mà làm

 

Vũ Mai Anh
Xem chi tiết
Bi Bi Kiều
Xem chi tiết
anhmiing
Xem chi tiết
zutaki
Xem chi tiết
zutaki
14 tháng 8 2023 lúc 20:09

mọi người giải giúp em với ạ

 

Nguyễn Lê Phước Thịnh
14 tháng 8 2023 lúc 20:13

a: Xét ΔADC và ΔAEB có

AD=AE
góc DAC chung

AC=AB

=>ΔADC=ΔAEB

b: AD+DB=AB

AE+EC=AC

mà AB=AC và AD=AE

nên DB=EC

Xét ΔDBC và ΔECB có

DB=EC

góc DBC=góc ECB

BC chung

=>ΔDBC=ΔECB

=>góc KBC=góc KCB

=>ΔKBC cân tại K

 

Nguyễn Hải Băng
Xem chi tiết
Aki Tsuki
18 tháng 11 2016 lúc 20:45

1) Ta có hình vẽ sau:


A B C D 1 2 1 2

Vì AB // CD nên \(\widehat{A_1}\) = \(\widehat{C_1}\) (so le trong)

AD // BC nên \(\widehat{A_2}\) = \(\widehat{C_2}\) ( so le trong)

Xét ΔABC và ΔCDA có:

\(\widehat{A_1}\) = \(\widehat{C_1}\) (cm trên)

AC: Cạnh chung

\(\widehat{A_2}\) = \(\widehat{C_2}\) (cm trên)

\(\Rightarrow\) ΔABC = ΔCDA (g.c.g) (đpcm)

2) Chứng minh tương tự ta có: ΔCDA = ABC (g.c.g)

\(\Rightarrow\) AB = CD ( 2 cạnh tương ứng) (đpcm)

3) Mình sửa lại chỗ AE = AC là AE = AB đó nha, bn ghi nhầm đề!!!

Ta có hình vẽ sau:

A B C F E 1 2

Xét ΔABC và ΔAFE có:

AE = AB (gt)

\(\widehat{A_1}\) = \(\widehat{A_2}\) (đối đỉnh)

AF = AC (gt)

\(\Rightarrow\) ΔABC = ΔAFE(c.g.c) (đpcm)

Nguyễn Huy Tú
18 tháng 11 2016 lúc 20:41

Bạn áp dụng trường hợp bằng nhau cạnh - góc - cạnh của tam giác rồi chứng minh nha

 

Nhuyễn Hồng Nhung
Xem chi tiết
Nguyễn Nam Cao
13 tháng 7 2015 lúc 14:49

Nối CM

Xét tam giác ACD và tam giác BCD có chung đường cao hạ từ đỉnh C xuống cạnh AB và có AD = 2 BD

=> S ACD = 2 S BCD  (1)

Xét tam giác ADG và tam giác BDG có chung đường cao hạ từ đỉnh G xuống cạnh AB và có AD  = 2 BD

=> S ADG = 2 S BDG   (2) 

Ta có : S ACG + S ADG  = S ADC  (3)

S BDG + S BGC = S BCD    (4)

Từ (1), (2), (3) , (4) ta có :

S ACG + S AD = 2. ( S BDG + S BGC )

S ACG + 2 S BDG = 2 S BDG + 2 S BGC

=> S ACG = 2 S BCG

Vậy diện tích tam giác ACG gấp 2 lần diện tích tam giác BCG

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 2 2019 lúc 12:23

Giải bài 40 trang 80 SGK Toán 8 Tập 2 | Giải toán lớp 8